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XVIIL. On a New Geometry of Space. By J. PLUCKER, of Bonn, For. Memb. R.S.

Received December 22, 1864,—Read February 2, 1865.

I. On Linear Complexes of Right Lines.

1. INFINITE space may be considered either as consisting of points or transversed by
planes. The points, in the first conception, are determined by their coordinates, by «,
¥, z for instance, taken in the ordinary signification; the planes, in the second conception,
are determined in an analogous way by their coordinates, introduced by myself into
analytical geometry, by ¢, 4, v for instance.

The equation

te+uy+vz41=0
represents, in regarding «, y, z as variable and 7, w, v as constant, a plane by means of
its points. The three constants ¢, u, v are the coordinates of this plane. The same
equation, in regarding 7, u, v as variable, #, ¥, z as constant, represents a point by means
of planes passing through it. The three constants are the coordinates of the point.

A point given by its coordinates and a point determined by its equation, or geome-
trically speaking by an infinite number of planes intersecting each other in that point,
are quite different ideas, not to be confounded with one another. That is the case also
with regard to a plane given by its coordinates and a plane represented by its equation,
or considered as containing an infinite number of points. Hence is derived a double
signification of a right line. It may be considered as the geometrical locus of points, or
described by a point moving along it, and accordingly represented by two equations in
2, 9, 2, each representing a plane containing that line. But it may likewise be con-
sidered as the intersection of an infinite number of planes, or as enveloped by one of
these planes, turning round it like an axis; accordingly it is represented by two equa-
tions in ¢, , v, each representing an arbitrary point of the line. The passage from one
of the two conceptions to the other is a discontinuous one *..

2. The geometrical constitution of space, hitherto referred either to points or to planes,
may as well be referred to right lines. According to the double definition of such lines,
there occurs to us a double construction of space.

In the first construction we imagine infinite space to be transversed by lines them-
selves consisting of points. An infinite number of such lines pass in all directions
through any given point; each of these lines may be regarded as described by a moving

# According to this discontinuity, a plane curve represented by ordinary coordinates may have a conjugate
which disappears if the same curve be represented by means of line-coordinates. See ¢ System der analytischen
Geometrie,” n. 330.

MDCCCLXYV. 51

R
‘ J§
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [P

hagr

Philosophical Transactions of the Royal Society of London. STOR N

WWWw.jstor.org



726 DR. PLUCKER ON A NEW GEOMETRY OF SPACE.

point. This constitution of space is admitted when, in optics, we consider luminous
points as sending out in all directions luminous rays, or, in mechanics, forces acting on
points in every direction.

In the second construction infinite space is likewise regarded as transversed by right
lines, but these lines are determined by means of planes passing through them. Every
plane contains an infinite number of right lines having within it every position and
direction, around each of which the plane may turn. We refer to this second concep-
tion when, in optics, we regard, instead of rays, the corresponding fronts of waves and
their consecutive intersections, or when, in mechanics, according to PoiNsor’s ingenious
philosophical views, we introduce into its fundamental principles *couples,” as well
entitled to occupy their place as ordinary forces. The instantaneous axes of rotation
are right lines of the second description.

3. In order to constitute a new geometry of space, we may fix the position of a right
line, depending upon four constants, in a different way. We might do it by means of
four given right lines, by determining, for instance, the shortest distance of any new line
from each of the four given ones. But all such conceptions were rejected, and the ordi-
nary system of axes adopted in order to fix the position in space of a right line. Thus
the new researches, indicated by the foregoing remarks, are intimately connected with
the usual methods of analytical geometry. The two fragments presented on this occasion
are only calculated to give an exact idea of the new way of proceeding, and to show its
importance, greater perhaps than it appears at first sight.

4. A right line of the first description, which we shall distinguish by the name of ray,
may be determined by means of two of its projections. We may select the projections
within the planes XZ and YZ, in order to get, without generalizing, the greatest
symmetry obtainable, and give to their equations either the form

x=rz-p,

y=82+0,}............(1)
or '

te+tv,2=1,

uy—}-vyz:l.}"""""'(?)

In adopting the first system of equations, the four constants r, s, ¢, o are the coord:-
nates of theray: two of them, r, s, indicating its direction, the remaining two, g, s, after
its direction is determined, giving its position in space. The ray meets the plane XY
in the point

=p, y=gq.

In adopting the second system of equations, we get, in order to determine the same

ray, the four new constants 7, u, v,, v,, which likewise may be regarded as its coordi-

nates; ¢ and u <equal to % and %) indicating the reciprocal values of the intercepts
cut off on OX and OY by the two projections of the ray, v, and v, (equal to <___7:)
8

and (—%)) the reciprocal values of the two intercepts cut off both on OZ.
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5. A right line of the second description, which we shall distinguish by the name of
aris, is determined by any two of its points. 'We may select the intersection of the axis

with the planes XZ and YZ as two such points, and represent them by the system of
equations

at +z,0=1,

yu+z,;v-—l,"'°""""(3)
or by the following equally symmetrical,

{ =pv+=,

u=qu+t=. } ’ (4)

In making use of the first two equations, the four constants a, ¥, 2, 2, are the coordi-
nates of the axis, indicating the position of the two points within the planes XZ, YZ.

In making use of the second system of equations, p, ¢, =, = are the four coordinates
of the axis, this axis being fixed by the intersections of two planes, one of which is the
plane projecting it on XY, and determined by two of the four coordinates,

=, u=z=1>
—W——xa %—z-—y’

while the other plane determined by the two remaining ones,
z, Zu
t=pv=——év, u=gu=—30,
and represented by the cquation

pr4qy+42=0,
passes through the axis and the origin.

6. If we consider the four coordinates of a ray as variable quantities, we may in
attributing to them any given values successively obtain any ray whatever transversing
space. But in admitting that an equation takes place between the four coordinates,
rays are excluded: we say that the remaining rays constitute « complex represented by
the equation.

In admitting fwo such equations existing simultaneously, those rays the coordinates
of which satisfy both equations constitute a congruency represented by the system of
equations. A “congruency” contains all congruent rays of two complexes, it may be
regarded as their mutual intersection. If we admit that three equations are simul-
taneously verified by the four coordinates, the corresponding rays constitute a configura-
tion (Strahlengebilde, surface reglée) represented by the system of three equations. A
configuration may be regarded as the mutual intersection of three complexes, 7. ¢. as
the geometrical locus of congruent rays belonging to all three complexes. Four com-
plexes or two configurations intersect each other in a limited number of rays. The
number of rays constituting a configuration, a congruency, a complex, and space, are
infinites of first, second, third, and fourth order.

7. If rays are replaced by axes, complexes, congruencies, and configurations of rays
are replaced by complexes, congruencies, and configurations of axes.

o H 2
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8. A configuration of rays or axes, represented by three linear equations, is, according
to the choice of coordinates, either a hyperboloid or a paraboloid. Let the three
equations of a configuration of rays be

Ar 4+Bs +C 4Ds 4+Eo =0,
Ar+Bs+C 4+Ds4+Ee=0,; . . . . . . . . (§)
A'r+B's4C'+D"s + E'e=0.
From these equations we derive by elimination six new ones, each containing two
only of the four variables. Let them be

ar+bs =1, . . . . . . .. 0L, . (6)
e +de =1, . . . . . . . . . . .0 (D
drdcde =1, . . . . . . . . . . .. 0 (8
Ys+do=1, . . . . . . . . . . .. (9
dr4+ds=1, . . . . . . . . . . . . .. (10

Ys+de=1.. . . . . . . . . .. ... (11)
In order to represent the configuration, the three primitive equations (5) may be
replaced by any three of the six new ones.
The equation (7) may be written thus,

cx+dy=1, . . . . . . . . . . .. 0L (T8
x and y replacing ¢ and ¢. It represents a right line within XY, intersected by the
rays of the configuration.

The equations (8) and (9) represent within X7, YZ two points enveloped by the
projections of the rays of the configuration; consequently the rays themselves meet two
right lines passing through these points, and being parallel to OY, OZ. From the
equations (8) and (9) if written thus,

1_d
aTa e
1_¥
‘17:‘7.8-{-0',

we immediately derive
de=1, dz=d,
dy=1, d'z=V,
representing the two right lines.

Thus by selecting in order to represent the configuration the three equations (7), (8),
(9), and interpreting them geometrically, we have proved that all its rays intersect three
fixed right lines, one of which falls within XY, while the two remaining ones are parallel
to OY and OX. Hence these rays, meeting three right lines parallel to the same plane,
constitute a hyperbolic paraboloid. :

In determining the paraboloid, we may replace any one of the three equations we
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made use of by the equation (6), which indicates that all rays are parallel to a given
plane. This plane, if drawn through the origin, is represented by the equation

ar+by=z,
obtained from (6) by writing g, ¥ instead of 1, s.

It may be sufficient here to state that a configuration of rays, if represented by
three linear equations, in which the coordinates 7, s, ¢, ¢ are replaced by %, u, v,, v,,
becomes a hyperboloid.

9. A configuration of axes represented by three linear equations would be a para-
boloid if the coordinates «, y, 2, 2, were employed, but becomes a hyperboloid if these
coordinates are replaced by p, ¢, @, z. 'We shall here consider the last case only, and
may for that purpose directly replace the equations (6)-(11) by the following ones:—

ap +bg =1, . . . . . . . . . . . . .. (12)
o e T € 1))
adp+dw=1,. . . . . . . . 000 (14
Vg+dz=1,. . . . . . . . . . . . . . (19
dptdz=1,. . . . . . ... (16)
Vo+dw=1. . . . . . . . . . . . . . .17

Any three of these equations, involving six constants, are sufficient to determine the con-
figuration.
If, after having replaced p, ¢, =, z by

—%, F, 101
x-’ y 2 5’ ?’
we regard @, ¥, 2, 2, as variable, (14) and (15) may be written thus,
r=a'z4d,
y=bz+d,
representing within the planes X7, YZ two right lines (AA’, BB') which are the locus of
points (A, B) where the axes of the configuration meet the two planes.
In regarding = and x as coordinates of a right line, the equation (18), being written
thus,
ct+du=1,
- represents a given point (E),
r=c, y=d,
enveloped within XY by the projections of axes. Therefore all axes of the configura-
tion intersect a third right line (CC') parallel to OZ and meeting XY in E. ‘
Hence we conclude that the configuration represented by the three linear equations is
a hyperboloid. Its axes meet three given lines, two of which, AA/, BB/, fall within
X7Z, YZ, while the third, CC), is parallel to OZ.
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The plane BOA passing through O and an axis AB is represented by the equation

z+qy+px=0.

The equation (12) being with regard to p and ¢ of the first degree, indicates that all
such planes, containing the different axes of the configuration, intersect each other along
a given right line DD’ passing through O. Hence all axes meet a fourth right line,
itself confined within the hyperboloid.

The complete determination of the hyperboeloid presents no difficulties. "We may for
instance find its centre and its axes by determining the shortest distance of any two of
the axes generating it.

10. Let a congruency either of rays or axes be represented by two linear equations.
In adding to these equations two new ones, likewise of the first degree, there exists only
one ray or axis the coordinates of which satisfy simultaneously the four linear equations.
Two new equations of this description are obtained if, among the rays or axes of the
congruency, we select those either passing through a given point, or confined within a
given plane. In the case of rays, let (#’, ¢/, ') be a given point, then we get

o' =rd e,
Yy =sd+o
in order to express that all rays meet in that point. TLet
tr4uy+vz24+1=0
be the equation of a given plane, then we get
tr4+u's+v=0,
tot+u'o+1=0
in order to express that the rays lie within that plane. Again, in the case of axes, let
(#, W, v) be a given plane, then we get the new linear equations

te41vz=1, - =pv +a,
or
Wiz, =1, w=qv' 4=,

in order to express that the axis is confined within that plane. Let in regarding 2/, 7/, 7
as constant, ¢, w, v as variable,

yt+yutZv1=0

represent a given point, then we get

¥'p+y'q+7=0,
Tot+yz+1=0
in order to express wnat the axes pass through that point. Hence
In a congruency represented by the system of two linear equations, there is one single
ray or axis passing through any given point of space, as there is one single ray or axis
confined within a given plane.
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11. In order to represent a congruency of rays, we shall here make use of the coor-
dinates ¢, u, v,, v,. Let
At 4+Bu +Cv, +Dv, +1=0,
A't+Bu+Cv,+D'v,+1=0

be its two equations. By successively eliminating each coordinate, we get four equations
of the following form, »

at +bu +cv, +1=0,
ot +0u +dvy +1=0,
ad"t4dv,+dv, +1=0,
V'u+c"v,+d"v,41=0,

any two of which involving six constants may replace the two primitive equations, the
remaining two being derived from them.

The first two of these equations, if ¢, u, v, and ¢, u, v, be considered as plane coordi-
nates, represent two points (U, V) the coordinates of which are

r=a, y=b, 2=¢ . .« . .« . . . . . (U
r=d, Y=, 2z=d, . . . . . . . . . (V)

Consequently the six constants upon which the congruency depends, if referred to the
three axes of coordinates OX, OY, OZ, are determined by means of the two points. U
and V. Hence is derived the following construction of rays of the congruency.

Trace through the two points U, V any two planes which intersect each other along a
right line confined in the plane XY, and meeting OX, OY in the points D, F. Let
E, G be the points where the two planes meet OZ. We shall get within the planes
XZ, YZ the projections of a ray of the congruency by drawing DE, FG. The ray (AC)
thereby completely determined will intersect the plane XY in the point C, the coordi-

nates of which are
o1

x=—t=OD, y:%:OF.

If a plane be traced passing simultaneously through both points U, V, both intersec-
tions E, G falling into one point A', the corresponding ray of the congruency A'C'
intersects OZ. If the right line UV be projected on YZ, XZ, the projections meet OZ
in two points A", A”. 1In these points OZ is intersected by the rays of the congruency
parallel to OX, OY. The ray parallel to OZ is obtained by the point C" where it meets

XY. The coordinates of C" are
z=0D', Y=OF,

D" and F" being the. points where the projection of UV intersects OX and OY.
Thus occurs to us the construction of rays passing through any point of OZ and any
point of XY. We cannot go further into detail here.
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12, Again, let a congruency of awes be represented by the equations
Az+4By +Cz, +Dz, +1=0,
Alz+By+Cz+4D'z,+1=0.
By successively eliminating z, and z, we may replace these equations by the following
two,
ax+by +cz, +1=0,
dar+-0y4dz,+1=0,

the six new constants of which are derived from the primitive constants. In regarding
z, Y, 2, %, as point-coordinates (where z may be written instead of z, and z,), the last
equations represent two planes. The six coordinates of both planes,

t=a, u=0, v=¢,

t=d, u=0, v=c,
are the six constants of the congruency, consequently the congruency is determined by
means of these two planes and the axes of coordinates.

Suppose both planes to be known. Draw any right line meeting them in M and M/,
project M on X7 and M’ on YZ. The right line joining the two projections B and A
is an axis of the congruency.

If we project on X7 and YZ any point of the right line JK along which both planes
intersect each other, the right line joining both projections, B/, A', is an axis parallel to
XY. All axes obtained in that way meet, within X7 and YZ, both projections of JK.
Hence the axes of the congruency parallel to XY constitute a paraboloid. The ray
within XY is obtained by projecting the point where the traces of both planes meet on
OX and OY and joining both projections, B" and A", by a right line, &ec.

13. After these preliminary discussions we shall now proceed in a more systematic
way, and henceforth exclusively make use of the coordinates , s, ¢, o. 'When a complex
of rays is represented by the linear equation

Ar4-Bs+Do+Ee+1=0, . . . . . <. (D
we may easily prove that the infinite number of rays passing through a given point of
space are confined within the same plane, and, conversely, that the infinite number of
rays confined within a given plane meet within the same point.

In order to select among the rays of the complex those passing through a given point
(@, 9, 7'), the following two equations,

Z=rs +e )
N (2)
are to be added to the equation of the complex. By eliminating ¢ and & we get
(A—E)r+(B—DZ)s+(14+E4/+Dy)=0. . . . . . . (8)

This equation being of the first degree with regard to the remaining variables 7 and s,
shows that all corresponding rays are parallel to a given plane, and therefore confined
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within the plane of that direction and passing through the point (¢/,%',2'). By replacing
z—a

z—2"

. . — , . 3
in the last equation 7 and s by and Z_Z,, we obtain, in order to represent that

plane, the following equation,
(A=E2)2—2)+(B—Dz)(y—y)+(1+E2'+Dy/)(2—2)=0. . . . (4)

14. Again, this equation being, with regard to (2, 4/, 2'), of the first degree, proves
that, conversely, all rays confined within a given plane meet in the same point of that
plane.

156. A complex the rays of which are distributed through infinite space in such a
way that in each point there meet an infinite number of rays constituting a plane, and,
conversely, that each plane contains an infinite number of rays meeting in the same
point, may be called a linear complex of rays. We may say, too, that, with regard to the
complex, points and planes of the infinite space correspond to each other; each plane
containing all rays which meet in the point placed within it, and each point being tra-
versed by all rays which are confined within the plane passing through it.

16. A linear complex of rays is represented by the linear equation (1), but it is easily
seen that this equation is not the general equation of a linear complex. The following
considerations lead us to generalize the preceding developments and to render them by
generalizing more symmetrical.

Hitherto we determined a ray by its two projections within XZ, YZ,

r=rz-4g,

Yy=8z--o0,

whence its third projection within XY is derived,
ry—sx=re—se. . . . . . . . . . . (§)

This equation furnishes the new term (ro—sg), which, like ¢ and ¢, depend upon 7 and s
as well as upon &’ and 7' in a linear way.
Again, from the equations
tr4us4v =0,
te+ue +w=0,

expressing that the ray (7, s, g, ¢) falls within the plane (7, », v, w) represented by the

equation
te+uytve-tw=0%,
we deduce
w )
Sr8—zo=(ro—sg). . . . . . . . . . (6)
* Henceforth we shall make use of four plane-coordinates ¢, u, v, w, and accordingly represent a point by a
homogeneous equation. Sometimes, where symmetry and brevity require it, likewise @, y, z shall be replaced
by £/6, n/0, £/6. Accordingly, by introducing the four point-coordinates &, », {, 6, a plane is represented by
a homogeneous equation.
MDCCCLXV. b1
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17. After introducing a new term containing (se—70), the equation of the complex

may be witten thus, - Bt O Dot Bet Flsgmra)=0. . . . . . . (T)
When, after (re—sg) is eliminated by means of the equation
ry —sa’' =re—sg,
we proceed as we did in the former case [14], the fbllowing equation is obtained in order
to represent the plane corresponding to the given point (2, ¢/, 2'),
(A—Ty'—E)(@—a')+(B-+F'—De)y—y)+ (C+Ea/+ Dy )e—2)=0. . (8)
This equation may be expanded thus,
(A—Fy' —EZ )2+ (B+F2'—D2 )y+(C+Ed + Dy )e=Aa'+By'+C2, . . (9)
and reduced also to the following symmetrical form,
A(@—a)+B(y—y)+ Cz—2)+ D(ys—y)+ E(w'z—22)+ Faly—y/)=0.  (10)
18. 'We may directly prove that all rays confined within a given plane meet in the
same point. The equation of this plane being
det+uy+vz+w'=0, . . . . . . . . . (11)

we get, in order to express that a ray falls within that plane, the following three equa-
tions, '

tr+ws4v =0,

te+uo+uw'=0,

w's—vo—(ro—sg)t'=0,
each of which results from the other two. Betwéen these equations and the equation
of the complex (ro—sg),  and ¢ may be eliminated. The resulting equation,

(Bt'— Av' —Fuw')s+ (Dé —Fu' +Fv')o + Ct' —AY —Ew'=0, . . . (12)
being linear with regard to the two remaining variables s and s, represents a right line
parallel to OX and intersecting YZ in a point, the coordinates of which are

Bl —Ad—Fu'
= DI —Ed =T

}.

. Gl —Ad—Eu/ I
Y =—DiI—Ed¥F/

(13)

/

Hence all rays of the complex supposed to fall within the plane (11) intersect that right
line, and consequently meet in the same point. Two coordinates of that point are given
by the last equations, the third,

Cuw — By —Du'!
e YW
'z_Dt' o, Fv”} e e e e e e e e (14)

is obtained by introducing the values of 2 and #' into the equation of the plane.
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V/e may represent the point corresponding to the given plane (¢, «/, ¢/, @) by its
equation,

{Cw' —Bv'—Dw' )t — (Ct' — Av — Ew'Yu+(Bt' — A/ — Fw’)_v + (Dt —Ev'+Fv)yw=0, (15)
which may be written thus,
A(Vu—uw'v)+B(t'v—2't)+ C(w't —t'u)+D(t'w—w't)+E(w'nv—vw'w)+F(vw—w'v)=0. (16)

19. Tt is easily seen that both equations (12) and (16) are the most general ones,
indicating the supposed correspondence between point and plane. Therefore (10) is
the most general equation of a linear complex.

20. According to the fundamental relation which characterizes a linear complex, the
plane corresponding to a given point is determined by means of any two rays passing
through that point, as the point corresponding to a given plane is determined by any
two rays confined within that plane.

Suppose P and P’ to be any two points of space, and p and p' the two corresponding
planes. Let I be the right line joining both points, II the right line along which both
planes intersect each other. Draw through I any plane intersecting II in Q, join
Q to P and P' by two right lines QP, QP'. These right lines, both passing through
points (P, P') and falling within planes (p, p') which pass through them, are rays of the
compiex. The plane PQP’, containing both rays and consequently containing I, corre-
sponds to the point Q, whence we conclude that planes passing through any points
Q, Q of IT ‘intersect each other along I. Likewise it may be proved that any plane
drawn through II intersects I in the corresponding point. We shall call I and II fwo
right lines conjugate with regard to the linear complex, or merely conjugate lines. The
relation between two conjugate lines is a reciprocal one; each of them may be regarded
as an axis in space around which a plane turns while the corresponding point describes
the other; each also may be regarded as a ray, described by a moving point, the corre-
sponding plane of which turns around the other.
~ Each right line meeting two conjugate right lines is a ray of the comp

To each right line of space there is a conjugate one.

If a point move along a ray of the complex, the corresponding plane—containing each
ray of the complex which passes through the point, and therefore especially the given
one—turns around the ray.

Each ray of the complex may be regarded as two coincident conJuoate lines.

21. We may also connect the preceding results with the general principle of polar
reciprocity. Indeed the general equation (10), which represents the plane correspond-
ing to a given point, is not altered if ’, ', 2 and &, y, z be replaced by one another.
Consequently we may say, in introducing the denominations pole and polar plane
instead of corresponding point and plane, that the polar planes of all points of a given
plane pass through its pole, and conversely, that the poles of all planes passing through
a given point fall within the polar plane of that point. In our particular case a plane,

912
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containing its own pole, is determined by means of the poles of any two planes passing
through that pole; likewise a point, falling within its polar plane, is determined by
means of the polar planes of any two points of its polar plane. A right line joining
any two points of space is conjugate to the right line, along which the polar planes of
both points intersect each other. If one of two conjugate right lines envelopes within
a given plane a curve, the other describes a conical surface; the vertex of the cone falls
within the plane containing the enveloped curve. Generally if one of the two conju-
gate right lines describes a configuration, the other one likewise describes such a sur-
face. If one of the two surfaces degenerates into a cone, the other degenerates into a
plane curve*,

22. A point of space being given, to construct the plane which contains all rays of the
complex passing through the point. A

Each ray intersecting two conjugate lines is a ray of the complex. Accordingly
the only right line starting from a given point and meeting any two conjugate is a
ray of the complex. We obtain a new ray, starting from the same point, by means
of each new pair of conjugate lines. All such lines constituting the plane corre-
sponding to the given point, two pairs of conjugate lines are sufficient to determine
that plane.

A plane of space being given, to construct the point where meet all rays of the complex
confined within the plane.

Fach right line joining the two points in which two conjugate right lines are inter-
sected by a given plane being a ray of the complex, there will be obtained, within the
given plane, as many rays as there are known pairs of conjugate lines. Any two such
pairs are sufficient in order to determine the point within the plane corresponding to it
where all rays meet.

A plane is intersected by the two lines of each conjugate pair in two points; the right
lines joining two such points are rays of the complex converging all towards the point
which corresponds to the plane. Again, the two planes passing through a point of space
and meeting the two lines of a conjugate pair, intersect each other along a ray of the
complex confined within the plane which corresponds to the point.

23. After this geometrical digression, immediately indicated by analysis, we resume
the analytical way.

By putting in the general equation (9) of the plane correspénding to a given point

/ -

(wa ¥, Z)’ 2=0, y,=0, 2=0,
we obtain

Az+By+Ce=0, . . . . . . . . . . (17

in order to represent the plane corresponding to the origin.

* The peculiar kind of polar reciprocity we meet here was first noticed by M. M6Brus in the 10th volume of
¢Crelle’s Journal,” and was afterwards expounded by L.F.Maexus in his valuable work ¢Sammlung von
Aufgaben und Lehrsiitzen aus der analytischen Geometrie des Raumes,’ pp. 139-145.



DR. PLUCKER ON A NEW GEOMETRY OF SPACE. 737

By putting successively

z’:oo,
Y=o,
: .z":OO,
the same equation becomes
C+Eax+Dy=0,
B4Fr—Dz=0,1. . . . . . . . . . (18)
A—Fy—Fz=0.

Accordingly these equations represent the planes corresponding to points moved to an
infinite distance along OZ, OY, OX. ,

By combining each of the equations (18) with (17), we get the rays conjugate to the
axes of coordinates OZ, OY, OX, forming a triangle, the angles of which fall within the
three planes of coordinates, XY, XZ, YZ, into the corresponding points.

24. By putti

y putting W oo,
the equation (15), representing a point corresponding to any given point (#, §' #/), becomes
Dt+Eu—Fv= 0,

and then indicates that the point corresponding to the infinitely distant plane of space
falls itself, at an infinite distance, along a direction which may be represented by the
equations

D=E=F ¢ o o oo oo - (19)
while, if rectangular coordinates were supposed,
Dae+4Ey+F2=0

represents the plane perpendicular to it.

We shall call this direction the characteristic direction of the complez. It is invariably
connected with the complex.

25. By putting successively

! —

{ = oo,
—

W= oo,

¥ = oo,

we get, in order to represent within the planes of coordinates YZ, XZ, XY, the points
corresponding to these planes, the following equations:
Cu—Bv—Dw=0,
Ct — Ay —Ew =0, e e e e (20
Bt —Au—TFw=0.
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Accordingiy the coordinates of these points are

0 =2, ]

Tr=V, ?/—_Dzyta z—ﬁ=zt,
C A

y:O, w:—Eéxu, Z=E5z“’ LUooe v e e e e (2].)
B A

z=0, m:-—F_a;v, y__F_yv,

whence may ve derived the following relation,

wvytzu_
Xy Yv2t

In putting C=—1, the right line conjugate to OZ, if regarded as an axis, may be
determined by its four coordinates [5],

p=A, ¢=B, =»=D, 2=FE.
These coordinates therefore are four of the constants of the complex
Ar+Bs+Dos+Eg+F(sg—s0)=1.

MN conjugate to OZ remains the same whatever may be the value of ¥. If by putting
F equal to zero the last equation becomes a linear one, the complex is completely deter-
mined by MN conjugate to OZ.

26. The ratio of the three constants upon which the characteristic direction of the
linear complex (1) depends, DIE:T
remains the same if the origin be changed or the complex moved parallel to itself. But
if by turning the complex the characteristic direction simultaneously move, that ratio is
altered. One of the three constants F, E, D becomes zero if the characteristic direction
be confined within XY, X7, YZ; two of them disappear, ¥ and E, F and D; E and D
if that direction fall within OX, OY, OZ. Here the general equation becomes

Ar+Bs+C+Ds =0,
Ar4-Bs+C+Eg =0, 5% + - + - - . . . (22)
Ar—+Bs+C+-F(sg—re)=0. J
27. The ratio of the three constants
A:B:C
varies if the complex be moved parallel to itself. If the plane corresponding to O pass
through OZ, OY, OX, one of the three constants C, B, A becomes zero; if this plane

be congruent with XY, XZ, YZ, . e. if O be the point corresponding to XY, XZ, YZ,
two constants A and B, A and C, B and C disappear, and the general equation of the
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complex becomes
Do+Ee+F(sg—rs)+C =0,
Do +Ee+F(sg—rs)+Bs =0, Coe e e (28)
Do+Eg+F(sg—70s)4Ar=0.

28. In order to represent a linear complex by equations of the utmost simplicity, let
us take any plane XY, X7, YZ perpendicular to the characteristic direction, and draw
through its corresponding point O the axis OZ, OY, OX. The resulting equations will
assume the following forms,

F(se—ro)+C =0,
Bs +Eo =0, e e e e (28%)
Ar +Ds=0.

The planes corresponding to all points of a right line having the characteristic
direction are parallel to each other; and conversely the locus of points correspond-
ing to parallel planes is a right line of that direction. Hence we conclude that there
is one fixed line, the points of which correspond to planes which are perpendicular to it.
Consequently, on the supposition of rectangular coordinates, we may in only one way
represent a linear complex by means of equations assuming the form of those above.

29. In order, for instance, to get the first of these equations, which by replacing —-%
by % may be written thus,
sg—ro=F,
it will be sufficient to direct OZ along the fixed line. As no supposition is made either
with regard to the position of the origin on OZ, or to the direction of OX and OY
within the plane XY which is perpendicular to OZ, this equation will remain abso-
lutely the same if the system of coordinates be moved parallel to itself along OZ, or
turned round it. In other terms,

A linear complex of rays invariably remains the same if' it be moved parallel to itself
along a fixzed right line or turned round it.

The fixed right line may be called the awis of rofation, or merely the azis of the
complex.

80. We may give different geometrical interpretations to the last three equations,
involving each a characteristic property of a linear complex of rays.

Any two planes XZ, YZ intersecting each other along OZ being given, rays of space
may be determined either by their projections on both planes, or by the points where
they meet them. In the first case, if a third plane intersecting XZ, YZ along OX,
OY at right angles be drawn, there are two planes LMN, I/M'N/, parallel to each other,
passing through the two projections LN, M'N, and meeting OZ, OY, OX in N and N/,
M and M/, Land I'. In the second supposition, denote the two points of intersec-
tion by U and V, and their projections by U’ and V'. Accordingly U'U, V'V, and U'V'
may be regarded as the projections of UV on the planes X7, YZ, and on OZ. 1f in the
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first case
LL . MM'_,
NN T
in the second
uuL YV,
UIV! =,

all rays thus determined constitute the linear complex, represented by

sg—ro=F,
the axis of which is OZ.
If £#=0, the linear complex is of a peculiar description, all its rays meet the same
right line, the axis OZ.
31. The results of [29] may be derived in a direct way. Let (2, %/, #) be any point
of space; according to the general equation (10) its corresponding plane with regard to

the complex
P se—re=k . . . .. . . ... . (24)

will be represented b
P y Yoe—dy=h(z—4). . . . . . . . . . (25)
In putting #/=0, y'=0, this equation shows that all planes corresponding to points of
the axis of rotation OZ are perpendicular to this axis (in the case of oblique coordinates
parallel to XY).
If the point fall within XY, we get by putting 2'=0,

ye—ay=ks;

consequently the corresponding plane passes through O. In denoting the angle which
it makes with the axis of rotation by 2, we obtain

cosk:——zkr—_-—,
Vy!2+x12+k2
whence
yr+a?=ktan’A. . . . . . . . . . (26)

Hence we conclude,

Right lines parallel to and at an equal distance from the axis of the complex are met
under the same angle by planes corresponding to their points.

32. The following results are immediately derived from (26).

The plane p corresponding to any given point P passes through OP, O being the
projection of P on OZ. Let the plane p and the right line OM perpendicular to it in

O turn round the axis OZ, through an angle g, and denote them after turning by p' and

OM'. The projection of OP on OM' is a constant, and equal to p. So is the perpen-
dicular drawn from P to p'.

Again, £ being given we may, by determining 2, construct the plane corresponding to
a given point, and, conversely, by determining OP, construct the point corresponding to
a given plane.
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The following theorem is the geometrical interpretation of the equation (26).

Draw through a point P its corresponding plane p, and the plane XY perpendicular
to the axis of the complex meeting that axis in O. Let R be an arbitrary point of p,
and R its projection on XY. The double area of the triangle POR' divided by R'R is

a constant, and equal to £.
33. In order to generalize, we may start from the equation

Ar+Bs+C+Do+Eg+F(se—re)=0 . (7),

and proceed in the following way. By replacing , g, z by &, », {, ¥ (see [16], note),
and omitting the accents, we immediately derive from equation (10),

¢= Cu—Bv—Du,
n=—Ct+Av+Bw, | (27)
{= Bt—Au—TFuw,
3= Di{—Eu-Fo, J

& #, { & indicating any point, and ¢, w, v, w its corresponding plane. From the first
three of these equations results the equation

At+By+C0{=—(AD—BE+CF)w,

which, multiplied member by member by the fourth equation,
Di—Fu-+Fo=3,
and divided by Sw, furnishes the following relation,

(Ax+13y+0z)(Dl%_EZ%+Ff~U>‘=_(AD_BE+CF). L. (29)

In a similar way we obtain

(C3+E£+Dy) Bi—Au—Fw
- v
__ BY—D{+Ft —Ct+Au+Ew
= - : o T ¢24%))
_ AS=E{—Ty Cu—Bv—Dw
g | ¢ ’
= —(AD—BE+CI).

34. In starting again from the equation (26),
sg—ro=LFk,

and in supposing that there is a right line determined by means of the coordinates of
any two of its points (2, 7/, ') and (2", ¢, 2") according to [31], its conjugate line will
be represented by the system of equations,

Yo —a'y=k(z—2'),
',yllx_xﬂ'y:k(z '—'ZH),
MDCCCLXY. 5K
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AWhich, after eliminating successively 7 and &, may be replaced by the following ones:
‘ZJIgI__ny":k[(xJI_ wl)z_('x"zl_xlzﬂ)]’
2y =y =k —y Yo~ (' —y 2]
In denoting the coordinates of the two conjugate lines by
Tos So» 80> G and 7%, 8%, g, o,

the following relations are immediately obtained :

, ol el Y=y
= = S
=T So PO
2l — gl M : Yl — "
Qo="_nr_Jg ° Oo=—"nm_J
W0l ll
rYy —xy
Soo—To00o=—"__1 °
1"__ o) "t
r'= k‘nxl wlll’ = k- n?/r yr Ti ?
2"y —aly ally! —aly
, 2lel — ol , Yzl — g2
g=— w”y’—"x_-’_y_"’ ==k 2 = .z"y".
‘Whence
To__So__%__%__(S020—"70%)
T T 0T g0 I3
and

(800 —1740,)(8%"—1"6°) = F".

Not any two conjugate right lines intersect each other; if congruent they belong to
the complex. S

85. A linear complex depends upon five constants, four of which fix in space the
position of its axis. In the case of the equations (23), this axis falling within an axis
of coordinates, there remains only one constant. The position of the axis of the com-
plex and its remaining constant may be determined by means of the five independent
constants of the general equation (7).

For that purpose we shall make use of the transformation of coordinates. If the
axes of coordinates be changed, the coordinates of a ray change at the same time, and
we get formule analogous to the formule in the case of ordinary coordinates, in order

to express the coordinates of one system by means of the coordinates in the other.

36. Let
r=rz+oe,

y=sz+o
be the equations of a ray referred to the system of coordinates (@, g, z). If referred to
another system (#/, 9/, ), its coordinates will be replaced by new onmes (v, ¢, ¢, o), but
their equations retain the same shape,
7 =r7+ g',
y =57 +d.
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If the primitive system of coordinates be only displaced parallel to itself, the coordi-
nates of the new origin being (2°, ¢°, 2°), we obtain
¥=x—2°, y=y—y’, Z=z—2";
and by substituting in the last equations,
x=r'z+(d+a"—1'z),
y=824(c'+y°—92);

whence, by comparison with the primitive equations,

r=r, )
= |
g:g’+x°—7‘z°,}' e e e e e e (30)
o=0+y° —s2". |

‘We have further
sp—ro=(s¢ —r'e')fa's—yr. . . . . . . (81)
If 2"=0, 4"=0, and accordingly the origin move along OZ, the expression (se—7v)
remains unaltered [29].

37. If OY and OX turn round OZ, forming in the new position OY’, OX' the angles
o and « with OX, we have

x=2a' cos x4y cos ' =rz4p,
y=a'sin 49 sin o =sz+0;

whence, on putting («'—«)=¥,

2 rsin o' —s cos o/ J+ g sin o — o sin u"
sin Y sin &
y rsine—scosa , gsina—o sina
- sin 9 Z sin &

We immediately derive from these equations of the ray in the new system («/, ¢/, #),

7 sin y=7 sin o/ — s cos o, )

i € s !
sin y=p sin &/ — 0 cos «
¢ S G 159

—8 sin.y=7sin & — $ cOS e,

—o sin y=psine —ocosa,

whence
r=1 cos a4 cos«,)
e=¢  cos o’ cos o/, (32)
s=17' sin a4¢ sin o,
o=¢ sin &40’ sin o, |
and

(sg—ra):(s’g’;ﬂa’)sin%. e (1))
X2
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If especially S:g-, the last four equations become

r=7 cos g—¢ sin o, |

e=¢' cosx—d sin «,
. e €23
s=¢sin a5 cosew, J

c=¢'sin e+ cos ,
and the expression
se—r6
will not be altered by the transformation of coordinates [29].
38. Again, let OX and OZ turn round OY; let &/ and « be the angles formed by
these axes in their new position, OX' and OZ/, with OZ, and & —x=3. In the new
system of coordinates the primitive equations of the ray become

(7 sine+a' sin ') =(2' cos w42’ cos & Jr-e,

y'=(7' cos a2’ cos &')s+a.

From the first of these equations we derive

2'(sin o —7 cos &)= —2/(sin «—7 cos &') +¢,
whence
____ sine—rcosa (35)

sina'—rcose’’

d= & . (36)

sina'—7 cos o
After replacing in the second equation of this number 2’ by ('z'4¢'), we obtain

9 =(cos a7 cos a')sz' (o4 s cos ),
whence
s'=(cos 47 cos ')s,

d=0+sd cose';
and by eliminating #' and ¢’ by means of (35) and (36),
T 1))

sin o —7r cos &'
(co— ] in o
g—ra)cosa +osina

o= — ]
sin o —7 cos &

C e e e . (38)

From (35)—(38) we derive

g —pg/={pro) cosatosina, (39
Sina —7CosSa v

from (36) and (37),

!

et O €)'
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On the supposition of rectangular axes of coordinates, the last equations become

' i{a—rcosu
P == osatrsina’
| — e ,
£ cosa-7rsina
Y €5 §
s
g — T cosa+rsina
; _____LS,Q"Q"') sinu-.—trcosa
cosa+trsina
' i__(sg—70) cosa—acsina R 47D
5¢ Vo= cosa+rsina ’ ( )
!
- 43
=0 L (4)

In order to pass from the first system of coordinates to the second, 7, s, ¢, ¢ and
7, §, ¢, d are to be replaced by one another, while the sign of « is to be changed. Thus
we get the following formulee :—

sin e 47! cos & )
r = *—‘“—_—T-—_’
cosa—7' sin &
!
g = g, T )
cos a—7' sin & ,
g S € 23]
S = — ! 2
cosa—7r' sina
; = (s'e! —7's") sin a+ ¢’ cos &
O 2
cos a—7' sin a
(dg'—1'¢") cos a—c sin
Sp—ro= e e e e (45)

cosa—r7' sina
39. The general equation of the linear complex
Ar4+Bs+C+Do+Ee+F(se—r6)=0. . (7)
becomes, if the origin is moved to any point (2%, 3, 2°) . . . (30),
(A—Fy’—E')r+(B+Fa*—D2")s+(C+Ea"+D2°) + Do’ + Ed + F(sp—75)=0.
: a° g0 20

If D=E~F

the primitive equation is not altered. Consequently the complex remains the same if
it be moved parallel to itself along a direction indicated by the last equations. We
obtain in denoting by £, 7, {, the angles which this direction makes with OX, OY, OZ,

— —_—
—_—— =

D I F -

cosf __cosn___cosl o >-“(46)

40. Tn order to get OZ congruent with a right line OM of the determined direction
and passing through O, we may in the first instance turn the system of coordinates
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round OZ in its primitive position through an angle & such that ZX in its new position
contains OM. Accordingly we obtain

cos £
CoS o= ———3>
sin ¢
whence
1—cos?¢— cos?f cos?y B2
tan? = ¢ £

cos? £ =cos*£‘,—'=j)_2'
By making use of the formulee (34), the equation of the complex (7) becomes
(A cos e+ Bsin a)r'— (A sin x— B cos )¢
~+(E cos @+ D sin o) — (Esin e —D cos a)d +C+F(sd — ') =0,
and may be written thus,
Ar+Bs+C+De+F(se—re)=0,. . . . . . . (47)
in omitting the accents of the new coordinates and in putting
E cos e+ D sin 6=0, '
Cos o ]

=(AD—BE) %%, B'=(AD+BE) - L. L L. (48)

D'=(D2+E2)‘i‘.§i‘, C=C, F=F. !

41. In order to give within ZX to OZ the required direction along OM, the formulee

(44) are to be used after having replaced « by . Accordingly the equation (47) is
transposed into the following one,

Al(sin {+7' cos {)—B's' +C(cos {—7' sin Q)
+D'((s’g’—7/’a') sin {44’ cos z) -|—F'((s’g’—7"o’) cos {—0 sin g):
and may be written thus,
A'r4+B's4+-C"4+F'(se—re)=0, . . . . . . . (48%)
on omitting the accents of the coordinates and putting
D' cos{=F'sin{,
A'=(AF—CD/) st

F?
B'=—T1
’ . (49)
CH=(AIFI+AIDI)9%I§’

F'=(D"+ Flz) cos C )

42. Finally, the origin may be moved within XY to a point the coordinates of which

are 2° and %°. Accordingly the equation of the complex, on replacing ¢ and ¢ by g+2°
and o-%°, becomes
(AVI__FHyo)T_I_(B/I_l_FHwO)S_l_CII_I_FII(Sg_m_):O,
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and by putting
Al 'BII
y“:-FT,,x":——F,T............(50)
is reduced to
cn
(Se_yg)z—"ﬁr:k. . . . . . . . . . . . (51)
43. By successive substitution we obtain |
CII
k=—m
C'F'+ A'D/
=T DRy
2
CF+ (AD—BE)(D*+ E%) 55
- (DQ_I_EQ)QE%?_[_FQ ’
and finally, on observing that
2
CoS w2=ﬁ‘2]—)ma
the symmetrical expression
AD—BE+CF .
]L'=--‘*mg“. L T (52)

In order to replace OZ and OX by each other, we may make use of the formule (41)
and (42) on putting e=4=. By means of the last of these formule the equation of the
linear complex (51) is immediately transformed into the following one,

L N G)
the constant £ being the same as before.
Again, on interchanging OY and OX, we get
e=ks. . . . . . . . .. o0 oL (B8

44, If k become equal to zero the complex is of a peculiar description, all its rays
meet a fixed line. If the complex be represented by the general equation

Ar+Bs+C+4Do+Eg+F(sp—r5)=0, . . . (7).
this peculiar case is indicated by the following condition,

AD—BE4HCF=0. ., . . . . . . . . . (55)

45. By eliminating from the general equation of the complex ¢, ¢ and (sg—r0¢) by
means of the equations
r=rz-+e,
y=sz+o0,
Sx—TY =89 —T0.
we get
(A+Yy—Ez)r+(B+4Fa—Dz)s+(C+Dy-+Ex)=0..
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If there exist a point (2, 7, z) where all rays of the complex meet, this point will be
determined by means of the following three equations,

A—TFy—FEz =0,
B+Fr—Dz=0,; . . . . . . . . . . (56)
C+Ex+Dy=0.

These three equations can subsist simultaneously only in the case where (55) is satisfied.

If this condition be satisfied, the locus of points, where all rays of the complex meet,
is a right line, the projections of which are represented by the last equations (56).

46. Such rays as belong to both linear complexes,

Q=Ar +Bs +C +Dos 4 Ep +F (sg—10)=0, R 1
Q=A'r+4-Bs+C' + Do+ Ep+ ¥ (sg—r0)=0, |
constitute a linear congruency of rays represented by the system of the two equatwns In
order to determine the congruency each of the two complexes,

Q=0, Q'=0
may be replaced by any other represented by
Qppld=0, . . . . . . . . . .. (59

where arbitrary values are given to the coefficient .

~ In each of the two complexes by means of which the congruency is determined, there
is a plane corresponding to each point of space which contains all rays starting from that
point. Both planes corresponding to the same point intersect each other along a single
ray, belonging to both complexes, 4. ¢. to the congruency. With regard to the congruency
one ray corresponds to a given point of space. 'The planes corresponding to the same
point, in all complexes, represented by (58) meet along a fixed line, the corresponding
ray of the congruency.

Conversely, there is in each of the complexes (58) a point corresponding to a given
plane in which all rays confined within the plane meet. By means of two such com-
plexes we get, within the given plane, two points; the right line joining the two points
is the only ray of the plane common to both complexes, and therefore belonging to the
congruency. We call it the ray of the congruency corresponding to the given plane.

To each point, as well as to each plane, corresponds only one ray. There are not any
two rays of the congruency intersécting one onother, or, in other terms, confined within
the same plane.

47. Suppose that AB is any given right line, and A'B', A"B" its two conjugate with
regard to the complexes Q, Q. Let C be any point of AB. Each ray starting from C,
if confined within the plane A’B'C belongs to Q, if confined within A”B'C to . There-
fore the intersection of the two planes A’'B'C, A"B'C, i. ¢. the right line starting from C
and meeting both conjugate, is the ray of the congruency which corresponds to the
point C.  If C move along AB, all rays of the congruency obtained in that way are the



DR. PLUCKER ON A NEW GEOMETRY OF SPACE. 749

rays of one generation of a hyperboloid, while the given right line AB and its two con-
jugate A'B, A"B" are rays of its other generation. In replacing Q and Q' by other
complexes arbitrarily taken among the complexes (58), the conjugate will be replaced by
others, all intersected by the rays of the congruency starting from AB. Hence

The right lines conjugate to a given one, with regard to all complexes intersecting one
another along a linear congruency, belong to one generation of a hyperboloid, while the
right lines of its second generation are rays of the congruency meeting the given line.

48. If a point move along a given right line of space, according to the last number,
its corresponding ray generally describes a hyperboloid. We may say that the same
hyperboloid is described by the ray which corresponds to a plane passing through the
given right line and turning round it. If the ray be the same in both cases, the point
where it meets the giverr line AB is a point of the surface, and the plane confining both
AB and the ray, the tangent plane in that point.

49. The hyperboloid generated by a ray of a linear congruency, the corresponding
point of which moves along AB, varies if this line turn round one of its points C. All
the new hyperboloids contain the ray which corresponds to C, but there is no other ray
common to any two of them. If AB describe a plane, by turning round C through an
angle =, there will be one ray of a hyperboloid passing through any point of space. A
linear congruency therefore may be generated by a variable hyperboloid turning round
one of its rays.

In an analogous way, a linear complex may be generated by a revolving variable con-
gruency.

50. While in each of the two complexes Q and ' there is a fixed line—the axis of the
complex around which its rays are symmetrically distributed—there is in a linear con-
gruency a characteristic section parallel to both axes of the complexes, and a characteristic
direction perpendicular to it.

The characteristic section, if conducted through the origin O, may be represented by
the equation
' ax+by+cz=0.

The two right lines starting from O and parallel to the two axes of the complexes are
represented by the double equations,

z_¥_%
DTETEF
X Y K4
W=F}I=F7.

These lines being confined within the section, we get in order to determine the con-
stants of its equation,
aD +0E +4cF =0,
aD'+0E +cF'=0,
whence
(DE—ED)b+(D'F—FD)c=0,
(DE—ED)e—(EF—FE)c=0.
MDCCCLXY. 5 L
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Accordingly the equation of the section becomes
(BF—FE)s—(DF—-F¥D)y+(DE—ED)=0, . . . . . (59)
and the double equation of the right line perpendicular to it,

x — ——y — z
FF—FE=DT—FD—DE—FD" * * * * * + + - (60

61. By giving to OZ the characteristic direction, the two complexes (57) will be
represented by linear equations of the form
Q=Ar +Bs +C+Ds +Ep =0,
Q’EA’T—I—B’S+C’+D'0‘+E’g:O,}
the origin and the direction of OX and OY; perpendicular to OZ, remaining arbitrary.

Again, OZ may be moved parallel to itself, and accordingly ¢ and ¢ replaced by (¢+2")
and (¢+47°), 2° and 9° being the coordinates of the new origin. If especially

C 4Dy’ +Ea* =0,
CI+DIZ/0+EI$0=O’

(61)

whence
0 9@:__]2,9
— DE-ED’
0— [N ]
~ DE-ED
by the mere disappearance of C and C' the equations of the two complexes become
Q=Ar+4Bs+Des+4Ey =0,}

f— Al ! ! ; (62)
Q=Ar4+Bs+ Do+ Ee=0.

OZ in its new position is a completely determined right line, which may be called
the axis of the congruency. It is easily seen that it intersects at right angles the two axes
of rotation of the complexes Q@ and Q, and consequently the axes of all complexes
represented by (58).

52. The planes corresponding in the two complexes (62) to a given point (2, 7/, 2')
are represented by

(A —=EZ )o+(B =D yy+(Ea' +Dy )o=Aa' By, l
(A'—E2 Yo+ (B —DZ)y+ (B2 + Dy)e=AW +By']

In order to express that both corresponding planes are the same, we obtain the fol-
lowing relations,

(A—=E): (B=D7): (Ea/ +Fy): (Ad +By’)=l

(A'—E7): (B—D%): (Ea'4+¥%): (Ad+BY). |

(63)

(64)

Since both planes pass through the given point, any two equations, hence derived, are
sufficient in order to determine the locus of points having, in both complexes, the same
corresponding plane. From any two of the following six equations where the accents
are omitted, the remaining four may be derived:
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(DE—ED)2—[(BE—EB)—(AD—DA)r—(AB—BA)=0, . .  (65)
(BD—D'B)y*+[(BE—EB)+(AD—DA)]ay+(AE—EA)*=0, . . (66)
(AD—D'A)y+(AB—FA)z+(DE—ED)z=0, . . . . . . . (67)
(BD—D'B)y—(BE—EB}#—(DE—ED)sz=0, . . . . . . . . (68)
(AB—BAYy+AE—FEA)rz—(BE—EB)yz=0,. . . . . . . . (69)
(AB—BA)r—(AD—DA)az+(BD—DB)zz=0% . . . . . . . (70)

53. According to the first two equations (65), (66), the locus in question is a system
of two right lines both intersecting OZ. These lines are confined within two planes
parallel to XY and determined by (65); their direction within these planes is given by
(66). We shall call them the “directrices,” and the characteristic section parallel to
both and equidistant from them, the central plane of the linear congruency. Both
“directrices” intersect at right angles the axis of the congruency, as the axes of all
complexes do. : ’

54. We may distinguish two general classes of linear congruencies; either both direc-
trices are real or both émaginary. In a particular case the two directrices are con-
gruent. Finally, one of the two directrices may pass at an infinite distance.

65. If the directrices are real, and the plane XY be conducted through one of them,
the following condition, , AB—BA=0, . . . . . . . . . . (T

is derived from (65). In order to determine within XY the direction of that directrix,
we get from (67), by putting 2=0,
(AD—DA)y+(AE—EAw=0. . . . . . . . (12

There is among the infinite number of complexes containing the congruency, which
are represented by Q4-pQ =0,

one of a particular description. It is obtained if, starting from (62), we put
A B.

whence .
(AD=DA)o+(AE=FA)=0. . . . . . . . (73)

All rays of that complex, and therefore all rays of the congruency, meet within XY a
fixed right line, represented by (72), on replacing ¢ and ¢ by # and y. This line there-
fore is the axis of that complex, and one of the two directrices of the congruency. In:
the same way it may be proved that likewise all rays of the congruency meet the other
directrix. Hence ‘

All rays of a congruency meet its two directrices.

* We may observe that any equation which, like those above, is homogeneous with regard to (A'B—B’A),'
A'C—C'A)... will not be altered if the complexes £ and Q' are replaced by any of the complexes (Q+pu€').

512
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Accordingly, both directrices being real and known, we may immediately draw through
any given point the only corresponding ray of the congruency.
56. In that peculiar class of congruencies indicated by the condition

DE-¥D=0, . . . . . . . . . . (74
one of the two directrices passes at an infinite distance. By putting simultaneously
A'B—B'A=0,

we get, in order to represent the only remaining directrix, now confined within XY, the
same equation as before (72). But among the complexes,

Q+pQ'=0,
there is, besides the complex (73), the axis of which is the directrix, another complex,
represented by 1y 1yQ=(A'D—D/'A)r-+(BD—D'B)s=0,

the rays of which are parallel to a given plane. Its equation may be transformed into

Ar+Bs=0; . . . . . . . . . . (75)
accordingly the equation of the plane becomes
Axr+4-By=0.

Hence in this peculiar case
All rays of the linear congruency meet the only directriz, and are parallel to a given plane.
57. From the last considerations we conclude that among the complexes intersecting
each other along a linear congruency, and represented by

Q4pQ=0, . . . . . . . . .. (76

there are in the general case two, of a peculiar description, all the rays of which meet
their axes. These axes, the directrices of the congruency, are two conjugate right lines
with regard to each of the complexes (76).

Generally there is only one ray of the congruency passing through a given point, as
there is only one ray confined within a given plane. But each of the two directrices
may be considered as the locus of points, from which start an infinite number of rays,
constituting a plane which passes through the other directrix. It may be likewise
regarded as enveloped by planes, confining each an infinite number of rays, which con-
verge towards a point of the other directrix.

68. We may represent any two complexes Q, Q' in any position whatever by equa-
tions depending only upon the position of their axes and their constants. Let A be
the shortest distance of the two axes from each other, and & the angle between their
directions.

Suppose that OZ intersects at right angles the axes of both complexes. Let OX be
the axis of the first complex €2, % its constant, OX perpendicular to XZ. The equa-

tion of the complex will be =
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If the axis OY be turned round O till, in its.new position OY’, the angle Y'OX
becoming &, the plane ZOY' passes through the axis of the second complex, the last

equation, by putting JsinS
6=0 sin J,

r=r 45 cos 9,

assumes the following form,

o sin S=kr'+ ks cos .

The axis of the second complex Q' meets OZ in a point O, O'O being A. O' may be
regarded as the origin of new coordinates, OY and OZ being replaced by O'Y" con-
gruent with the axis of Q', and by O'X" perpendicular to ZY"; then the second com-
plex Q' will be represented by the equation

g" =klsl(,

¢" and §" being the new ray-coordinates and %' the constant of the complex. In order
to make O'X" parallel to OX, it is to be turned round O' till, in its new position O'X",
the angle Y"O'X" becomes 3. Accordingly, by putting -

¢'=¢"sin g,
§'=r"cos ¥+ 5",
the equation of the complex is transformed into the following,
¢"sin d=A"r" cos S4-X'¢".
Finally, by displacing the origin O into O, ¢ becomes ¢+ A", whence
"' sin ¥=(%'cos S+ A sin )" - £'s.

- On omitting the accents, both complexes Q and Q', referred to the same axes of
coordinates OZ, OY', OX, the two last of which include an angle 3, are represented

by the following equations,
osind=kr+k cos J.s,

. . : (77)
o sin S=(# cos ¥+ A sin ). |

59. In order to determine the directrices of the congruency represented by the system
of the last equations (77), the equations (65) and (66) may be transformed by putting
A=Fk, B=Fkcosdy D=—sind, E=0,
A'=Fcos¥4+Asind, B=FK, D'=0, F'=—sind

into those following,

0=(2sin3)*—[(A+#)cos ¥+ A sin Y]z sin S+ (£%' sin®S— Ak sin S cos ), . (78)

y\? (K—k)cos¥3—Asind y %
0—_—(->— > L (1)

&
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! "
On denoting 1e roots of these equations by 2'sin9, 2"sin 9, and (%) , (%) , We obtain

(k k') cos 3+ A sin Sr

22"

sin &
4]clc'+[(lc k') cos §— Asm&]2
LY
(#=2) sin% &
(z>’+ (g)” __ (k+H)cos9—Asin$
x & - Y ’

g\ y\"\?__ 4kt + [(k— k’)cos-&—-AsmS]‘*
®-0))= e

The roots of both equations are simultaneously either real, or imaginary, or congruent.
In the last case we have

(k—%') cos S — A sin =2/ —FF,

B¢/~

The central plane of the congruency is represented by

whence

_ (k= — ') cos 9 — Asm-&

o= il N 10
In two peculiar cases this equation becomes
z=3% A,
either if
N=%,
or, whatever may be 3, if
k=F.

Hence the axes of any two complexes selected among those intersecting each other
along a given congruency are at equal distances from its central plane if their directions
are perpendicular to each other, or if the constants of both complexes are the same.

60. Without entering into a more detailed discussion of the last results we may
finally treat the inverse problem: a congruency being given by means of its two direc-
trices, to determine the complexes passing through it. ~On the supposition of rectangular
coordinates, the two directrices may be represented by the following systems of equations,

y—ar=0, 2=/,
ytar= 0, zg=—0.

These directrices are the axes of two complexes of a peculiar descrlptlon, ranging among
the infinite number of complexes which intersect each other along the congruency.

The two complexes, if moved parallel to themselves till their axes fall within XY, are
represented by the equations

o—ag=0,
o4 ae=0,
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whence, in order to represent them in their primitive position, the following equations
are derived,
6—ag-+0s— bar=0,

o+ ag—ds—dar=0.

By adding the two equations, after having multiplied the second by an undetermined
coefficient w, the following equation results,

(A +plo—(1 —p)ag+(1—p)ls— (14 p)lar=0,
which, on putting

1—p_
1+p«_7\’

becomes :
e—Aag+Ms—dar=0.. . . . . . . . . (81)

By varying a all complexes intersecting each other along the congruency are repre-
sented by this equation. Their axes are parallel to XY and meet OZ. According to
(19) and (52) we may immediately derive the direction of the axes and their constants.
The following way of proceeding leads us to the same results, giving besides the position
in space of their axes.

By turning OX and OY round OZ through an angle », by means of the formula (34),
in which «is to be replaced by w, the last equation is transformed into the following one,

(cos w+Aa sin w)e’ 4+ (sin @ —Ag cos w)g + (A cos w+ @ sin w)ds' 4 (A sin w —a cos w)dr' =0,

whence, by putting
tane=ie, . . . . . . . . . . . . (82)
we obtain
(14 tan®)e’-f- (A tan @ —a)dr' + (A +a tan »)ds' =0.
Finally, by displacing the system of coordinates parallel to itself in such a way that the
origin moves along OZ through 2°, we get

(14 tan® »)o' 4 (A tan w—a)dr' 4+ (A+-a tan w)ds' — (1 + tan®w)2"s =0,

whence, by putting

Atatan w ‘
1 + tang; ‘0, . . . . . . . . . . . (83)

0=
there results ‘
Atanw—a :
0= T+ tas o=k, . . . . L .. L. (84)

The values of tana, 2% and & remain real if both directrices become imaginary. In
this case, XY always remaining the central plane of the congruency and OZ its axis, a,

8, and y are to be replaced by an/—1, 88/ —1, un/—1. If @ be real, we may put

a= tan «,
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2. being the angle between the directions of the two directrices, bisected by XZ.
Accordingly we get
a=BRE . (%5)

tan o’

o 14 tan?e¢  tanw

tanae 1+ tan®w

sin w cos w
TV sinacos x

P . . . ... (86)

sin 2w
U sin 2a ?

tan? & — tan? w

k=1 tan «(1 + tan®w)

sin? & cos? w — sin? w cos?u
: L
Sin o COoS o

=4

(87)

— sin (¢4 ) sin (x—w)
- sin & cos ¢

The expression of 2° shows that the axis within the central plane is directed along
one of the two right lines bisecting, within this plane, the angle between the directions
of the two directrices. These two right lines, having a peculiar relation to the congru-
ency, may be called its second and third axis. The three axes, perpendicular to cach
other, meet in the centre of the congruency.

In order to express the angle w by means of 2°, we get the following equation,

0

. 20 .
sin 2o= - sin e,

indicating two directions perpendicular to each other, and corresponding to any value
of 2°.
61. By replacing in the expression

o 4 tan w
sineecose 1+ tan?w

tan w by % , we obtain on omitting the accent of 2°,

g

z(y2+x’)=m-xy.. N €:19))

The axes of all complexes constituting the congruency are confined within the surface
represented by that equation. But this equation remaining unaltered if the axes OX
and OY are replaced by one another, it is evident that the same surface contained the
axes of two different series of complexes; one of the two series constituting the given
congruency, while the other constitutes a strange one, obtained by turning the given
congruency round its axis through a right angle.
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62. In representing any three linear complexes by

Q =Ar +Bs +C +Ds +Eg +F (sg—r0)=0,
Q' =A'r +Bs+C +Ds +Eo +F (sg—res)=0,+ . . . . . (89)
Q'=A"r+Bs'+C'+ Do+ E'g + F'(sp—ra)=0,

the system of these three equations represents a linear configuration of rays. The com-
plexes may be replaced by any three selected among those represented by

Q4 pQ' +vQ"'=0

on giving to w and » any values whatever. By combining the three complexes Q, ', Q'
we get three congruencies, and accordingly three couples of directrices. Each ray of
the configuration, belonging simultaneously to the three congruencies, meets both direc-
trices of each couple. Hence in the general case the configuration is a hyperboloid ; its
rays constitute one of its generations, while the directrices of all congruencies passing
through it are right lines of its other generation. Any three directrices are sufficient in
order to determine the hyperboloid.

63. Let P and P/, Q and Q/, R and R’ be the three couples of directrices, each couple
determining a central plane. The three central planes Il, K, P meet in one point C,
which shall be called the cenére of the configuration. The segment of any ray of a con-
gruency bounded by both directrices being bisected by the central plane, the three right
lines drawn through the centre C of the configuration to the three couples of directrices
are bisected in the centre; they may be called diameters of the configuration.

Let, for instance, = and #' be the extremities of that diameter, #C#’, which meets both
directrices P and P'. The ray of the congruency (Q, Q') passing through = is parallel
to P, the ray passing through #' parallel to P. Both planes p and p/, drawn through P
and P’ parallel to the central plane II, each confining two right lines (one directrix and
the ray parallel to the other) which belong to the two generations of the hyperboloid,
touch that configuration, and the point where both right lines in each plane meet is the
point of contact.

Draw through the six directrices P and P’, Q and Q, R and R’ six planes p and 9/,
g and ¢, r and 7 parallel to the central planes IT, K, P. The six planes thus obtained
constitute a paralellopiped circumscribed to the configuration, the three diameters of
which join each the points of contact within two opposite planes. The axes of the three
corresponding congruencies (2, Q'), (Q, Q'), (2, Q") are equal to the distance of the
three couples of opposite planes; their centres are easily found.

64. The hyperboloid thus obtained is not changed if the complexes Q, Q', Q" be
replaced by any three others taken among the complexes

Q4+ uQ+rQ"1=0,

but the three congruencies vary, and their directrices and the three diameters of the

hyperboloid. The directrices may be either real or imaginary; accordingly the three.
MDCCCLXV. oM
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diameters either intersect the hyperboloid or do not meet it. In the intermediate case,
where both congruencies are congruent, the corresponding diameter falls within the
asymptotic cone of the surface.

65. Conversely, starting from the hyperboloid and any three of its diameters, we may
revert to the three corresponding congruencies and the series of complexes by means of
which these congruencies are determined. If especially the three diameters are the
axes of the hyperboloid, the axes of the three congruencies meet in the same point, the
centre of the surface, and are directed along its axes.

There is a double way of reverting from a given hyperboloid to the congruencies, and
further on to the complexes. The right lines constituting each of its two generations
may be considered as its rays, while the right lines of its other generation will be found
to be the directrices of the congruencies passing through the surface.

66. It might be desirable to support in the analytical way the geometrical results
explained in the last numbers. For that purpose we may select in order to determine
the configuration, three complexes of that peculiar description where all rays meet the
axis. Accordingly the axes of the three complexes Q, ', Q" are three of the six direc-
trices, P, Q, R for instance, confined within the planes p, ¢, #. In assuming these
planes as planes of coordinates XY, XZ, YZ, the three complexes, constituting the con-
figuration, are represented by equations of the following form,

Q =C +4Ds +Ee=0,
O =Bs +D's+F (sg—re)=0,p . . . . .. (90)
Q”EAHW"'l—E”e+F"(8g—7"0’)=0.

Tn order to represent by means of a single equation between &, ¥, z a configuration

determined by means of three equations between ray-coordinates, these coordinates are
to be eliminated by means of the following two equations, '

r=rz+p,
y=sz-to,
to which the third derived one,
ST —7TY=8¢—70,

may be added. In our case we may at first eliminate sp—7¢, whence

(B' +Fz' )s—F'yr +D'e =0,
(A"—F"y )+ F'zs+E'e=0,
and after that ¢ and o,
Ezr+Dzs=C+Dy+Ea,
(B'+Fa2 —D'z)s—Fyr +D'y =0,
(A"—-F"y—E"z)T+F"xS—|—E"w=O.
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Finally, by putting the values of # and s taken from the last two equations into the

first one, we obtain
{(B' +Fz —D'2)E'—F'"D'y} Eaz

+ {(AII__FIIy_EIIZ)DI_EIIFIx.}Dyz
+ {(A"—=F'y—E'2)(B'+ Fa—D'z)+ FF¥'ay}(C+ Dy + Ex)=0,
which, by the disappearance of terms of the third order, becomes
A"B'C4A"(BE4CYF )z+B(A'D—-CF')y—CA"D'+E'B')z |
+A"FEa?—BF'Dy2+ CE'Dz? I
+(A"F'D—BF"E)ay —(A"D'E+ CE'F)ay ‘} - 0D
+(CF'D'—B'E'D)yz=0. )
After dividing by A"B'C and replacing
E D DI FI EII FII
_'Ga —63 'BTI’ '_']_373 I/p 'A‘"
by & 4, &, €, &, 4", the last equation assumes the following symmetrical form,
1=(E4+E)a—(r+4")y—(5' ") l
+g§lx2+”nlly2+gr’gl!zz
+(En+8ay+ (€888 vzt (1 +4"8)y2=0. } |
In order torepresent the configuration this equation replaces the three equations (90),

which may be written thus,
no+45g—1=0,

o —¥(se—roe)—1=0,p . . . . . . . . . . (93)
§e—n"(sp—10)+1=0. |
It shows that the configuration is a hyperboloid touching the three planes XY, X7,
YZ. The rays within these planes are represented by

(92)

2=0, tr 4y =1,l
y=0, Eed+dz=1. . . . . . . . . (94)
the directrices within them by
‘ 2=0, datn'y =1,
y=0, Er4-82=1,0. . . . . . . . . (95)
=0, ny +§"z=1.

The points of contact, being within each plane the intersection of the ray and the
directrix, are easily obtained.
The rays within the three planes of coordinates which form one edge of a circum-
scribed parallelopiped meet the directrices within the planes forming the opposite edge.
5M2
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11.—On Complexes of Luminous Rays within Biaxal Crystals.

1. A single ray of light when meeting the surface of a doubly refracting crystal is
divided into two rays determined by means of their four coordinates, 7, s, ¢, o. All inci-
dent rays constituting a configuration, especially all rays starting from a luminous point
and forming a conical surface, constitute within the crystal a new configuration, repre-
sented by the system of three equations between ray-coordinates. All incident rays
constituting a congruency, emanating, for instance, in all directions from a luminous
point, constitute within the crystal, after refraction, another congruency. Finally, a
complex of incident rays, all rays, for instance, emanating in all directions from every
point of a luminous curve, constitute within the crystal another complex of refracted
rays. The congruency of refracted rays is represented by two, the complex by a single
equation between ray-coordinates.

2. But before entering into the discussions indicated by the foregoing remarks, a
short digression on double refraction might be desirable.

A biaxal crystal being cut along any plane whatever, we may suppose that this plane
is congruent with 2y, and that the point where an incident ray meets it is the origin of
- coordinates O. Let

r=pz, Y=¢% . . . .« . .« . . . . . (D
be the equations of the incident ray, whence

g:g, . . . . . . i . . . o . . 2

T (2)

the equation of the plane of incidence. In the moment of incidence the front of the
corresponding elementary wave, perpendicular to the ray, will be represented by

a4gy+pe=0. . . . . . . . . . (3)
After the front of the wave has moved in air through the unit of distance, its equation
becomes sgqytpr=w . . . . . . . . . . (4
on putting 1+p*+@=uw

At this moment the front of the wave intersects xy along a right line, which we may
denote by RR, the equation of which is

gy+p$=w.-(5)

- If the optical density of the surrounding medium increases, the value of w decreases
in the same ratio. v
3. Around the point O, where the incident ray meets the section of the crystal, let
the wave-surface be described as it is at that moment when the front of the elementary
wave intersects 2y along RR. The position of the axes of elasticity of the crystallized
medium being known with regard to the axes of coordinates, the equation of the wave-
surface only depends upon three constants @, b, ¢, which are to be referred to the same
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unit as w. If both systems of axes are congruent the wave-surface is represented by
the well-known equation

(2 0y 4-*2*) (@ + 3y + 2°) — [ (B + ) *+- b (@ + )y + *(@* +-0°)2* |+ 0P =0, . (6)
which, for simplicity, may be written thus,
Q=0.

4. The wave-surface is intimately connected with three ellipsoids, the equations of
which are

2 2 2

% —|-%2— +%z =]., e e e e e e e e (7)
ar’+oy4er=1, . . . . . . . . . . (8
22 2 22 '
_b_c+a?’—c+&3=1.. N )

By means of the first and the second ellipsoid the wave-surface may be obtained most
easily. The third ellipsoid has been introduced by myself on account of the following
remarkable property. With regard to this ellipsoid the wave-surface is its own polar
surface, ¢. e. the polar plane of any point of the surface touches it in another point, and
vice versd, the pole of any plane tangent to the surface is one of its points.

The wave-surface and the three ellipsoids depend upon the same constants. When
the crystal turns around the point of incidence O, both the surface and the three ellip-
soids simultaneously turn with it. In the new position their equations involve three
new constants, indicating the position of the axes of elasticity with regard to the axes
of coordinates. Now the wave-surface may be represented by

' Q'=0,
and the third ellipsoid in the corresponding position by
Ax’+Bay+Cy*+2Daz+4-2Eyz+F—1=E=0. . . . . (10)

From the six constants of this equation, which may be regarded as known, you may
derive the six constants of the wave-surface by determining both the direction and the
length of the axes of the third ellipsoid. ,

Within the plane zy, supposed to be any section whatever of the crystal, OX and
OY may be directed along the axes of the ellipse along which this plane is intersected
by the third ellipsoid. Accordingly the constant B disappears from the last equation.
Besides, if OZ be directed along that diameter of the ellipsoid which is conjugate to
the plane 2y, and cease therefore, in the general case, to be perpendicular to it, both
constants D and E likewise disappear.

8. According to HUYGHENS'S principle, we obtain both rays into which an incident
ray is divided, when entering the crystal, by the following general construction. Con-
struct the two planes passing through the trace RR and tangent to the wave-surface
described within the crystal around the point of incidence O. Let H and H' be the
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points of contact within these planes. The two right lines OH, OH' drawn through the
point of incidence O and the two points of contact H, H' will be the refracted rays.

By means of the theorem referred to in the last number I have replaced this con-
struction by the following one, much easier to manage. Construct with regard to the
third auxiliary ellipsoid E the polar line of the trace RR. This polar line, which may
be denoted by SS, meets the wave-surface within the crystal in the two points H and H',
OH and OH' being, as before, the two refracted rays.

The plane HOH/, containing both refracted rays OH, OH', may be called the plane of
refraction. There are, generally speaking, four tangent planes passing through RR, as
there are four points where the wave-surface is intersected by SS. We get therefore
four rays, all confined within the plane of refraction, but two of them, not entering the
crystal, are foreign to the question.

6. The plane of refraction may be constructed solely by means of the third ellipsoid
E. The details of this construction depend upon the well-known different modes of
determining the polar line 8S. On proceeding in this way we meet some remarkable
corollaries concerning double refraction *.

7. The poles of all planes passing through the trace RR, represented by

gtpr=w . . . (b),

are points of SS.  All right lines passing through the point of incidence O and these
poles fall within the plane of refraction confining SS. These right lines may likewise
be regarded as diameters of the ellipsoid E conjugate to diametral planes passing
through the trace along which the surface of the crystal, 4. e. the plane zy, is inter-
sected by the wave-front in its primitive posmon, the trace being parallel to RR and

represented by
=0. . . . . . . . . .. (11
Hence W+ (1)

The plane of refraction is that diametral plane of the ellipsoid E, the conjugate dia-
meter of which is perpendicular to the plane of incidence in O.

# In concluding a former paper, ¢ Discussion de la forme générale des ondes lumineuses ” (Crelle’s Journal,
No. xix. pp. 1 & 91, Mai 1838), I gave the following construction :—

< Construisez, par rapport & lellipsoide directeur, la ligne droite polaire (SS) de celle qui est perpendiculaire
au plan d’incidence en O'. Elle coupera la surface de 'onde, deerite autour du point O, en deux points. Les
deux lignes droites qui vont du point O aboutir & ces points seront les deux rayons réfractés; tandis que les
deux plans, qui, contenant la perpendiculaire en O' (RR), passent par ces deux mémes points seront les fronts
des deux ondes planes correspondantes. Enfin il a été démontré, dans ce qui préeéde, que les deux plans de
vibration sont ceux qu’on obtient en conduisant par les rayons lumineux (réfractés) des plans perpendiculaires
aux fronts des ondes correspondantes.”

At the present occasion I resume the discussion, announced by myself twenty-six years ago, of a part of this
construction. More recently, in the eighteenth Legon of his valuable work, ¢ Théorie mathématique de I'Elasti-
cité’ (1852), M. Lam# reproduces the curious relation between the wave-surface and the third ellipsoid. He
presents in the following Lecon a remarkable theorem, ¢ which is one of those immediately derived from this
relation.” [8]
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Accordingly the plane of refraction, conjugate to (6), is represented by the equation

dE dE
%gz—d—yp, . . . . . . . . . . . (12)

which may be expanded into the following one,
(Az+By+Dz)g=(Bz+Cy+Ez)p, B C )
(Ag—DBp)r+(Bg—Cply+(Dg—Ep)e=0*. . . . . . (14)

8. These equations remain unaltered if p and ¢ vary in such a way that the ratioi—;

or

remains the same, 4. e. if the angle of incidence vary while the plane of incidence
remains the same. The same equations do not contain w, the value of which depends
upon the density of the surrounding medium. Hence

All rays of light confined within the same plane of incidence, after being divided into
two by double refraction, are confined again within the same plane—ithe plane of refrac-
tion. This plane remains the same if the surrounding medium be changed.

9. The plane 2y, i. e. the surface of the crystal, containing the trace (11), its conju~
gate diameter, the equations of which are

”Jw‘::o, Eg‘/‘:O, . . o . . . . . « e (15)
or

is confined within the plane of refraction, whatever may be the incident ray. The same
may be proved analytically by observing that (12) is satisfied by means of the two equa-
tions (156). Hence

A ray of light of any direction whatever meeting the surface of a biaxal crystal in a
Jixed point is so refracted that the plane containing both refracted rays passes through a
Jized right line (15).

* On representing any one of both refracted rays by the equations
x=rz,  Y=82,

,(Aq—Bp)H—(Bq~0p)s+(quEp).=0, B ¢

indicates a relation between the direction of the incident ray, determined by the constants p and ¢, and the
direction of the refracted one, determined by » and s.

This equation will not be altered if the incident ray, moved parallel to itself, meet the section of the erystal
in any point '

the last equation, written thus,

r=p, y=a.

If » and s be regarded as variable, ¢ and ¢ being constant, the equation (1) represents the plane of refraction

corresponding to the incident ray — —
. = 5 = Y

and containing both refracted rays.
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If without the crystal the plane of incidence turns round the perpendicular to the
section, within the crystal the plane of refraction simultaneously turns round the diameter
of the third ellipsoid conjugate to the section.

10. In order to construct the plane of refraction, we want to know another diameter
conjugate to any plane passing through the trace (11). In selecting among these planes
the wave-front itself in its primitive position, the plane of refraction will be obtained by
drawing a plane through both diameters conjugate to the section of the crystal and the
primitive wave-front.

The wave-front in its primitive position is represented by

pr+qy+2=0,
its conjugate diameter by the equations
dE___dE )
&Pz |
¢ (17)
dE___dE
which, if expanded, become
Aa:+Bg/+Dz=p(Dx+Ey+Fz),l (18)

Bx+Cg/+Ez=_q(Da:+Eg/+Fz).J. C

In order to prove in the analytical way that the diameter conjugate to the primitive
wave-front falls within the plane of refraction, it is sufficient to observe that, by elimi-

nating %;E between the two equations (17), the equation of the plane of refraction (12)

is obtained.

11. If a ray of light meet the surface of a crystal in a given point, the third ellipsoid
remains invariably the same as long as the position of the crystal is not altered. There-
fore the diameter conjugate to the wave-front remaining likewise the same, whatever
may be the section of the crystal passing through the point of incidence, the plane of
refraction always passes through that fixed diameter. Again, if the incident ray, dis-
placed parallel to itself, meet the surface of the crystal in a new point, this new point of
incidence becomes the centre of the third ellipsoid, likewise displaced parallel to itself.
The diameter conjugate to the primitive wave-front, always passing through the point
of incidence, retains the same direction. 'We may finally observe that the surface of the
crystal, if a curved one, may be replaced for any incident ray by the plane tangent to it
in the point of incidence. |

It a ray of light meet a biaxal crystal in a given point, whatever may be the surface
bounding the crystal and containing that point, the plane of refraction passes through
JSized right line.

If a system of parallel rays meet the surface of a biaxal crystal, each ray of which
after double refraction is divided into two, there is within the crystal a fized direction,
not depending upon the shape of the surface, so that the directions of both refracted rays
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into which any incident ray is divided, and that fived direction, are confined within the
same plane.
12. By putting
Dg:Ep?
the equation of the plane of refraction becomes

(Ag—Bp)a+(Bg—Cply=0,
which, after eliminating p and ¢, may be written thus,
(AE—DB)2+(BE—DC)y=0. . . . . . . . . (19

In this case the plane of refraction is perpendicular to ay and passes through OZ.
The plane of incidence perpendicular to &y, or its trace within this plane, is represented
by

Dy=Ez. . . . . . . . . . . . . . (20

It is easily seen that this trace is perpendicular to the trace of that diametral plane

which, with regard to the ellipsoid E, is conjugate to OZ. Indeed this plane is repre-

sented by

dE
7 =Dr+Ey+Fz=0,

and its trace within xy by
Do+ Ey=0.

Each ray within the plane of incidence (20) is divided by double refraction into two,
both confined within the same vertical plane of refraction. That is especially the case
with regard to the ray incident at right angles; the corresponding plane of refraction,
represented by (19), contains the incident ray and both the refracted rays.

13. Besides the vertical ray, there is in each plane of incidence one ray confined with
both refracted rays within the same plane. After eliminating p and ¢ between the
general equations of the planes of incidence and of refraction,

9v=Ppy>
(Az+By+Dz)g=(Ba+Cy+Ez)p,
the following equation is obtained,
B(y’—2)+(A—C)ay+(Dy—Ex)=0, . . . . . . (21)
representing a cone of the second degree, the locus of incident rays which are confined
within their corresponding planes of refraction. This cone passes through the vertical

0Z, and intersects «y within two right lines perpendicular to each other. These lines
are congruent with the two axes of the ellipse .

Ar*+2Bx+Cy=1, . . . . . . o oL (22)
along which the plane zy is intersected by the ellipsoid E. (That is instantly seen by
putting B=0 [4].) Hence both rays, grazing the surface of the crystal along the axes

of the ellipse (22), are confined with both corresponding refracted rays within the same
plane. '

MDCCCLXY. 5N
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If especially the crystal be cut in such a way that #y become a circular section of the
ellipsoid E, each ray grazing the surface of the crystal will be contained within the cor-
responding plane of refraction. This plane therefore is easily obtained by means of the
trace of the plane of incidence and the diameter OZ' of the ellipsoid E conjugate to its
circular section ay.

14. In the preceding numbers the plane of refraction has been determined without
determining SS confined within it. This right line, passing through the infinitely distant
pole of ay, is parallel to the diameter OZ' conjugate to 2y and represented by the equa-
tions (16), which by eliminating successively y and 2 may be replaced by the following
ones, .

(B*>—AC)z+(BE CD)z_O} (23)

(B>—AC)y+(BD—AE)z=0.

The direction of SS being known, any one of its points, . ¢. the pole of any plane passing
through RR, will be sufficient to construct it. If the plane be parallel to the diameter
just determined, its pole will fall within the plane @y, and may be also regarded as the

pole of RR, with regard to the ellipse (22) along which this plane is intersected by E.
The trace RR being represented by

9y-+pr=uw,
w2=1+p2+q2,

the two lines, the equations of which are

(Az+By) %:1,

where

- (Ba+Cy) ’§=1,

will meet in the pole mentioned. Hence, on denoting its coordinates by #° and ",

mo_%g_-:_c_g.l,
=B—A
| (24)
o _Bp—Ag 1
Y=B_AC w
Finally, the equations of SS thus obtained are
=2 _ y—y° _ =z
D—BE=AR—BD=B—aic’ = = - ' - - - - (29)

In order to complete the construction of the two refracted rays, the points (M, M')
in which SS meets the wave-surface Q within the crystal are to be joined with O by
means of two right lines OM and OM'.

15. If rays of every direction meet the crystal in O, the corresponding wave-fronts in
that moment when, within the crystal, the wave-surface Q is formed, will envelope a
sphere,

xz_l_yz_l_zz:l"
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the radius of which is equal to unity. The locus of poles of the wave-fronts, if taken
with regard to the ellipsoid E, is a new ellipsoid, which, referred to axes of coordinates
directed along the axes of all auxiliary ellipsoids, is represented by the equation

s
Zgzé‘l"aﬁ—(ﬂ'l’a_%i:la

or
a4yt er=abe. . . . . . . . . . (26)

Its axes are obtained by multiplying the axes of the second auxiliary ellipsoid (8), to
which it is similar, by abe.

16. The new fourth auxiliary ellipsoid (26) is fitted to connect the constructions of
the refracted rays if, the section of the crystal remaining the same, the direction of the
incident rays vary. Indeed a right line (MM') drawn through any point Y of the fourth
ellipsoid (26) parallel to OZ/, i.e. to the diameter conjugate to xy with regard to the
third ellipsoid E, meets the wave-surface Q, within the crystal, in two points M and M'.
OM and OM' will be the two refracted rays corresponding to that incident ray which is
perpendicular to the plane conjugate to OY.

17. After this digression we resume our subject.

Let 2y be the section of a biaxal crystal and OZ perpendicular to it. Let a ray of any

direction starting from any point of OZ meet the section of the crystal in a point the
coordinates of which are

T—g, y=go.
Let
v=rate| @7)
g/:gz+0'J

be the equations of the incident ray. In order to express that this ray meets OZ we
obtain the following relation,

fg s. (28)
Let

x:rz-l—g,l

y=sz+0'f (29)

be the equations of any one of the two corresponding refracted rays. Let us finally
suppose that, without the crystal, z is negative, within it, positive. Accordingly in the
equations of the incident ray, positive values of z, in the equations of the refracted rays,
negative ones are to be rejected.
Again, let
Q=0
be the general equation of the wave-surface, and
E=A2"42Bay+ Cy*+2Daz+2Eyz+F22—1=0
the equation of the third auxiliary ellipsoid; the position of both being determined by
the position of the crystal with regard to the axes of coordinates.
ON2
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18. According to the footnote of [7], we have between the four constants p, ¢, 7, s, upon
which the direction of the incident and the refracted ray depends, the following relation,

(Ag—Bp)r+(Bg—Cp)s+(Dg—Ep)=0. . . . . . . (30)
By means of (28) this equation may be transformed into the following one,
(Ae—Bg)r4-(Be—Ce)s+(Do—Ee)=0, . . . . . . . (31)

and then represents a complex of refracted rays. As no supposition is made regarding
the position of the luminous point on OZ, the corresponding incident rays may start in
every direction from allits points. They,constitute therefore a complex of rays emanating
from OZ, perpendicular to the section of the crystal, and considered as a luminous right
line. This complex of incident rays, after entering the crystal, passes into the complex
of double refracted rays represented by the last equation.

19. By admitting that OX and OY, within the section of the crystal, were directed
along the axes of the ellipse, along which zy is intersected by the ellipsoid E, the constant
B disappears from the equation of the complex, which then may be written thus,

(Ar+D)o=(Cs+E). . . . . . . . . . (32)

We have hitherto supposed OZ to be perpendicular to ay, and will continue to do
so for incident rays without the crystal; but for the refracted rays entering it (the axes
0X, OY, perpendicular to each other, remaining the same) the direction of OZ may
be changed by replacing it by the diameter OZ' of the ellipsoid E, conjugate to . Then
the constants D and E likewise disappear, and the equation of the complex assumes the
most simple form,

Are=Cse.
20. On denoting by @, and &, the two semiaxesof the ellipse along which ay is

intersected by the ellipsoid E, we get

1 1
A= ;"2) 9 B= 'zg'
We may suppose, too, that g, falling within OX, is greater than §, falling within OY,
2 __ A2
whence the square of the excentricity of the ellipse ¢ becomes a°a2 %,
0

After having introduced the new constants, the last equation may be written in the
following ways,

¢ a

re—s8 a
oy e e (34)
se—re _ ay—p] o
p _—obﬁ N G133

Besides, on observing that gz%,
2 .

s=ha L (36)
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In order to get a geometrical interpretation of these equations, let any refracted ray
of the complex be projected in the ordinary way on the three planes of coordinates XY,
X7 and YZ; each axis of coordinates will be met by two of the three projections. The
fo—7r0

8

intercepts on OZ' are g— and%; on OY, s and ﬁi’,:ié’_; on OX, ¢ and Hence

With regard to all rays of the complex, the two intercepts on each axis of coordinates
are i the same ratio.

For OZ, i. e. for the diameter of the ellipsoid E conjugate to the section of the
crystal, this ratio is the ratio of the squares of the axes of the ellipse within this plane.
For OY, ¢. e. for the shorter axis of this ellipse, it is equal to the square of its excentri-

2
city ; for OX the greater axis equal to <—e§.%g).
0
Finally, if any incident ray, without, be projected on the section &y of the crystal

along OZ, 4. e. perpendicularly, and one of the two corresponding refracted rays, within
the crystal; along OZ/, the projections thus obtained are the traces of the planes of inci-

dence and of refraction, -;’; and; indicating the trigonometrical tangents of the angles,

between the two traces and the greater axis of the ellipse within the section xy. The
ratio of the tangents is equal to the ratio of the squares of the axes of the ellipse.

21. In orderto get a generalidea of the distribution of the refracted rays constituting
the complex, we may determine first the cone formed by rays passing through any given
point within the crystal. If M be this point and &, ,, %, its coordinates, the equations

T,=172 o,
=ratel (87)
Yo=8%+0 aJ _ 5
are to be combined with the equation of the complex, which, on putting a—o—ﬁ, may be

written thus, 0
, se=f%e. . . . . . . . . . . . . . (38
By eliminating ¢ and s, we get

Ts—Lyr=1—pzps. . . . . . . . . . (39)

This equation shows that the locus of rays of the complex which pass through the point
M is a cone of the second degree. Its equation in ordinary coordinates @, y, 2’ (2' being
referred to OZ') is

B(Y—Yo)(& —2)— Byo(a— 2. )¢ —2)=(1—B)a(x—2)y—50), - - - (40)
From this equation we immediately derive that, whatever may be the position of M
within the crystal, the cone always contains three rays parallel to OX, OY, OZ, as well

as a fourth ray passing through the origin O. Besides, the cone dependsupon the only

constant (3, the ratio of the two axes of the ellipse, here represented by
2

I
a§+b§_1""""""'(41)

along which @y is intersected by the third auxiliary ellipsoid E.
The equation (39), only depending upon the ratio of the constants a,, 7, 2, shows
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that the cone in question of double refracted rays is not at all altered if its centre moves
along a right line passing through the origin O.

22. In the peculiar case where M lies within the section of the crystal 2y all corre-
sponding incident rays likewise meet in that same point, constituting the plane of inci-
dence passing through OZ, and represented by

yae=a'y.
Here the cone of refracted rays degenerates into a system of two planes, which after
putting #,==0, are represented by
Z=0, 1
“'0(9“%)=ﬁ2%(x_x0)°j S

The second of these equations represents the plane of refraction corresponding to the
plane of incidence *.

28. If M fall within one of both the other planes of coordinates XZ dand YZ, the cone
of double refracted rays likewise degenerates into two planes.

24. Either by putting #/=0in (40), or, after having eliminated » and s between the three
equations (37) and (38), by replacing the remaining variables g and ¢ by # and 7, we obtain

yx—pFay=1-F)ry. . . . . . . . . . (43)
This equation represents, within ay, the trace of the cone of refracted rays which meet
in M. It is an equilateral hyperbola, having its asymptotes parallel to OX and OY, and
passing through the projection of M. The coordinates of its centre are

Y _ 521'0
V=T TS T

. (42)

whence

As the equation (43) does not involve the constant z,, we conclude that

The cone of double refracied rays continually changes if its centre be moved along @
right line parallel to OZ/, but its trace within the section of the crystal always remains
the same hyperbola.

25. Secondly, we may determine the curve enveloped by refracted rays confined
within any given plane. If the plane be

te 4wy +vz+w=0,

* In the present researches, the auxiliary ellipsoid E, which may be considered as described round any point
of the section of the crystal, as well as the wave-surface itself, has no other signification than to indicate by
its constants the molecular constitution of the crystal so far as the transmission of luminous vibrations is con-
cerned. Our equations only containing the ratio of these constants, the ellipsoid E and its elliptical trace (41)
may be supposed here to have any dimensions whatever. ’

The last equation (42) represents the plane of refraction as it represents its trace within ay. It likewise
represents, if the point M falls within the circumference of the ellipse (41), the normal to that curve in the
point M. Hence is derived an elegant construction of the plane of refraction.

If within zy round any point of incidence as centre the ellipse (41) be described, the traces of the planes,
both of incidence and of refraction, are such two diameters of that ellipse, the second of which is parallel to the
normal to it at the point where the first intersects it.
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the equation of this curve will result from the combination of the equation of the

complex
se=@re . . . . . (38)
with the two equations :
tr+us+v =0,
to+ue+w=0,

expressing that a ray (7, s, ¢, ¢) falls within that plane. By eliminating r and g, we
obtain

ws—po+(1—Fuse=0, . . . . . . . (44)
L and (—S—) being the coordinates of the projection, within a3/, of the refracted ray.
g a ,

The projection envelopes an hyperbola; so does the ray itself within the given plane.
The last equation (44) does not contain ¢, and therefore will not be altered if the given
plane turns round its trace within Y7/, represented by '

wy+vd+w=0.. . . . . . . . . . . (45)

‘Hence it follows that the projections of all refracted rays which meet that trace are
tangents to the same hyperbola (44), the asymptotes of which are parallel to OY and
OZ/, and which especially is touched by the trace itself, with regard to which

w [ w
C==——>5 —=——
$

v

The refracted rays themselves are tangents to a hyperbolic cylinder having as base the
hyperbola (44) and OX as axis.
26. In order to particularize, let us, in the first instance, suppose that the trace (45)

is parallel to OZ' and intersects OY in any point Q, OQ being equal to <—-%0> Then
v being equal to zero, the equation (44) becomes ‘

(w(1—B)u)s=0,
indicating that the hyperbola of the general case degenerates into two points, falling
within OY, one at an infinite distance, while the distance of the other (Q') from O is

1 1
0Q1=a=_1_52%=1_520cz. N 163

Accordingly the hyperbolic cylinder degenerates into two right lines, met by all
-refracted rays. One of the two lines within the plane #y along which the crystal is cut
is parallel to OX, and intersects OY in Q| the other is infinitely distant. Hence all
rays within a plane intersecting 27 along a trace (QZ;) parallel to OZ' are divided into
two sets. The rays of one set being parallel to the plane -y may be here omitted. The
rays of the other set meet in a fixed point of that same plane along which the crystal is
cut. If the plane turns round its trace QZ, the fixed point moves, within a4y, parallel
to OX, describing a right line @X,. Each ray meeting both right lines QZ; and QX
is a ray of the complex.
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27. If, in the second instance, the trace (45) is parallel to OY and intersects OZ
in R, OR being equal to (—%), the equation (44) becomes

ws=[3"vo,
representing a point of OZ/, the distance of which from O is

'y 1 w 1

OR’=—§=—B§ ey OR.. . . . . . . . (47
The hyperbolic cylinder therefore degenerates into a right line (RX,) within &2’
parallel to OX and passing through R". Hence

All refracted rays of the complex confined within a plane intersecting %' along a trace
(RY,) parallel to OY converge into a fixed point of the plane az. If the plane turns
round its trace, that point describes, within &2/, a right line RX, parallel to OX. Fach
ray meeting both lines RY, and R'X is a ray of the complex.

28. The axes of coordinates OX and OY may be interchanged by writing «, instead
of b,, and reciprocally. Then we get analogous results if, instead of traces within YZ/,
we consider traces within X7'. TEspecially we may immediately conclude from the last
equation written thus,

0; . OR'=¢;.OR, . . . . . . . . . . (48
that the relation between the two right lines R'’X, and RY, is a mutual one.

29. All rays intersecting two fixed right lines constitute a linear congruency, the
fixed right lines being its directrices (Sect. 1., 65). Consequently the complex of
refracted rays may be generated in three different ways by a variable linear congruency.
In each case the two directrices of the congruency move parallel to any two of the three
axes of coordinates OX, OY, OZ, intersecting the third axis in two points, the distances
of which from O are in a given ratio.

30. Hitherto we have supposed that the plane zy is any section whatever of the
crystal. Let us now, in particularizing again, admit that the crystal is cut along one of
the two circular sections of the third auxiliary ellipsoid E, then represented by

A +1)+F2=1;
3 being equal to unity, the equation of the complex becomes
TO=Se. . . . . e e . e .. (49)

In this peculiar case therefore all rays of the complex meet the diameter OZ', conju-
gate with regard to E to its circular section zy. Hence all refracted rays of the com-
plex intersect OZ as all corresponding incident rays start from OZ.

Both the diameter of the third auxiliary ellipsoid E perpendicular to its circular section
xy, and its diameter conjugate to that section, fall within a principal section of the ellip-
soid containing its greatest and least axis, and consequently also its two optic axes. The
rectangular axes of coordinates OX and OY may, without changing the equation of the
complex, turn round O within the section ay. If one of them, OX for instance, become
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the vertical projection of OZ/, the plane a2’ is a principal plane of the ellipsoid E, con-
taining the two optic axes, and OY the mean axis of the ellipsoid E.

31. If the plane ay is a principal section of the third auxiliary ellipsoid E (and there-
fore of all auxiliary ellipsoids), the axis OZ/, becoming perpendicular to &y, is congruent
with OZ. Then the equation of the ellipsoid E, referred to rectangular coordinates,

becomes
@2 P P2
betwta=h
and may be written thus,
ax’+by*+c*=abe.

Hence the equation of the complex is

ore=bse. . . . . . . . . . . . (80)

If the crystal be turned round OY through an angle %, we get, after replacing # and z
by

& COS w—2 SIN o,
& 8in 42 cos o,

the following equation of the ellipsoid E,

(@ cos® ¢ sin® )2’ by’ — 2(a—c) sin & cos & . ¥z (@ sin® @ +-¢ cos® )z =abe. . (H1)
The axes of the elliptic trace within zy being always directed along OY and OX, the

equation of the complex assumes the form of the equation (32), which, after putting
E=0 and '

A:C:D=(acos’w—csin’a):b: —(a—c)sine cos a,
passes into the following one,
(@ cos® e—csin® a)rs—bsp— (a—c¢) sine cosew.0=0. . . . . (52)

32. The equations (51) and (52) of the last number belong to the case in which one
of the three axes of elasticity, OY, falls within the section of the crystal. The two
remaining axes of elasticity are confined within the plane XZ, where one of them, corre-
sponding to C, makes with OZ an angle «, this angle being counted towards OX.

The two equations may be regarded as representing the general case of uniazal crystals
cut along any plane whatever. Indeedlet OC be the single optic axis making with the
normal to the section 2y of the crystal any angle «. Draw through OC the plane xz
perpendicular to zy, and OY perpendicular to that plane. The rectangular system of
coordinates being thus determined, the equations (51) and (52), after having replaced
¢ by a, will belong to uniaxal crystals.

33. If the optic axis of an uniaxal crystal falls within the section a4y, the equation of
the complex, on putting =21, becomes

’ cro=asg.

In the case of uniaxal crystals, each plane passing through the optic axis may be
regarded as a principal section of the ellipsoid E. Therefore the equation of the com-
MDCCCLXY. 50
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plex assumes the form of the equation (60); the form of the two equations being the
same as in the general case, where the direction of the third axis is oblique to xy.

If in the case of uniaxal crystals the circular section of E is congruent with the sec-
tion #y of the crystal, we get in order to represent the complex of double refracted
rays, on putting «=0, the following equation,

rs=35g,

indicating that the plane of refraction is congruent with the plane of incidence, or, in
other terms, that both the ordinary and the extraordinary ray into which any incident
ray, starting from OZ, is divided by double refraction, likewise meet OZ.
34. The preceding fragmentary researches on double refraction—only calculated to
present a new and curious instance of a complex—may be concluded by a last remark.
All the results we have hitherto obtained, especially the determination of the com-
plex of double refracted rays, only depend, 1st, upon the direction of the diameter of the
ellipsoid E conjugate to the section of the crystal; 2ndly, upon the ratio of the axes of
the elliptical trace along which the same ellipsoid meets that section. Here, therefore,
the third auxiliary ellipsoid E, an? by +cz*=dbe,
may be replaced by the following one,
ar’ by’ + e’ =1,

which is similar to it. It is immediately seen that, along the different directions, the
reciprocal values of optical elasticity within the crystal are indicated by the radit vec-
tores of the new ellipsoid, as the squares of these values are represented by the radii
vectores of the second auxiliary ellipsoid,

a’2® + 0%y 4t =1.

ApprrionaL NorTx.
Received December 11, 1865.

1. Coordinates of a right line.

1. A right line, if considered as an axis round which a plane revolves, is determined
by any two positions of the revolving plane; analytically, by means of two groups of
plane-coordinates. If considered as a geometrical locus, described by a point, it is
determined by any two positions of the moving point; analytically, by means of two
groups of point-coordinates. |

Let the plane- and point-coordinates
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be such that
tetuy+vztwe=0, . . . . . . . . . . (1)

which equation, if geometrically interpreted, indicates that each peint (—, = —) falls

vy . t u v ey . ] ) t u v\ )
within each plane (5’ e ;}), or, which is the same, that each plane (E » %> passes

through each point (1:;, -;/—_, g) I called such coordinates “ associated plane- and point-

coordinates”*, and here we shall make use of that denomination. By two couples of
associated either plane- or point-coordinates,

t uw v #ou o

—_—9 =9 —9 —,, o 24 —,,

w w w w o w
!

X }4 X

—2.—?!-, — — ?/

the same right line is determined.
‘We may employ homogeneous instead of ordinary equations?; accordingly each group
of three coordinates is replaced by a group of four:
¢, u, v, w, ¢, u, v, w,
x5 Y, 2, @, 2, 72, .
2. Both planes (¢, u, v, w) and (¢, , v, w'), represented in point-coordinates by the
equations

ta +uy +vz +ww =0,
tetuy+vz4w's=0,
are arbitrarily chosen amongst those passing through the right line, and may be replaced
by any two others, the equations of which have the form
(8 o+ (- pad Yy (oo (0o =0,
where w denotes any arbitrary coefficient. But the position of the right line with
regard to the axes of coordinates OX, OY, OZ is not characteristically connected
with such a plane, except in the case where the plane itself has a peculiar relation to
the axes. There are four such cases: the plane may either pass through the origin, or
project the right line on the three planes of coordinates. Accordingly, in putting
wHpw' =0, v4w'=0, utpw'=0, ¢4put'=0,

the last equation successively becomes o

(tw' —t'w)ax =+ (v —w'w)y + (v —vfw)z =

(B —tv )w+(u —uv )y— (v —vw)w ._0,

(B —tw ) —(uv) —u'v z—(ut/ —w'w)w=0,|
—(tw —tu Jy— (8 —tv )o—(tw' —t'w )w:O.}

* (eometrie des Raumes, No. 5.
+ T first introduced homogeneous equations into analytical geometry, CrELLE’s Journal, v. p. 1, 1830.

502

(2)



776 DR. PLUCKER ON A NEW GEOMETRY OF SPACE.

Any two of the four planes represented by these equations are sufficient to fix the posi-
tion of the right line. They contain five constants, which by division may be reduced
to four, the necessary number upon which the line depends. Besides the five constants
in the two equations we meet a sixth one in both remaining equations. But the right
line being determined by the former five, the sixth ought to be a function of them. The
equation of condition, connecting the six constants, may, for instance, be obtained by
adding the three last equations, after having multiplied the first of them by — (¢u'—%'u),
the second by (#/—t'v), and the third by —(uv'—w'v). Thus we obtain

(tw —t'u)(vw' —v'w) — (' — ) (v —w'w) 4+ (wo' —wv)(tw' —tw)=0. . . . (3)

The following six constants, taken with an arbitrary sign,

+(w' —wv), +(@'—tv), (tu'—tw), T(tw'—tw), L(ww'—vw), L(vw'—vw),

may be regarded as the six coordinates of the right line.
3. In quite a similar manner, when in order to fix the position of the right line
we replace the two planes by the two points (2, 7, 2, ») and (¢, ¢/, 7, ='), we get the
following equations in plane coordinates,

(27 —2'w )t +(yo —y=w)u+ (25 —2'w v =0, |

(a7 —a'z )t +(y2' —y'z Ju—(25' —2'= )Jw=0,

(2y' =y )t —(9¢ =y’ Jo —(y'—y'=)w=0,
—(ay' =2y Ju— (22 —&'2 o — (o' —2'=)w=0, ]

(4)

representing four points, the first of which is at an infinite distance on the right line of
which the position is to be determined, while the three others are the points in which
that line meets the three planes of coordinates. Accordingly we may likewise regard.
the six constants of the last four equations, taken with an arbitrary sign,

t(eo'—a's), £(yo'—y'=), L(w'—dw), L(y/—y2), L(s—a2), L(zy—ay),

as the six coordinates of the right line. These six coordinates are connected by the
following equation of condition:

(xy —&'y) (20 — 2w ) — (22 = 2'2) (yo' —y'w)+(y2' —y'2)(@s' —2'=)=0. . . ()

4. In denoting the distance of the right line from the origin of coordinates by 3, the
angles with it makes with the three axes OX, OY, OZ by d, B, 7, and the angles which
the normal to the plane passing through it and the origin makes with the same axes
by 2, w, v, the following relations are obtained:

I. (w) —w'v ) s —(0' —tw ) : (b —tw) : (W —tw): (v —v'w): (vi) —v'w)
II. =(@e'—a=): (yo'—y'w): (20'—2w): (y7 —y2): —(2d —a'z): (xy—2'y)
II. = cose : cos@ : cosy Scosh ocosm : 0COSW.
5. Hence we conclude that

cosw, Cosf3, cosy, OCOSA, 0COSf, OCOSY
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may likewise be regarded as line-coordinates. Here the equation of condition between
the six coordinates becomes ’

cos o cos A+ cos f3 cos w+ cos y cosy=0,
which, added to the two following ones,
cos® ¢ cos’ B+ cos’ y=1,
cos’ A + cos® w+ cos’r=1,
reduces to four the number of constants upon which the position of the line depends.
6. The two sets of ratios I. and II. retain the same generality after putting w=w'=41,

s=o'==1. If we suppose, again, that both planes and both points, by which the line is
determined, are coincident, we get, choosing the under signs, two new sets of equal ratios,

IV. =(udv—vdu): —(tdv—vdt) : (tdu—udt) : ac du D v
V. = dr dy . dz  :(ydz—zdy): —(adz—zdx): (xdy—ydz).

Thus we obtain two systems of differential coordinates, dw, dy, dz indicating the direction
of the line, dt, du, dv the direction of the normal to the plane passing through it and
the origin of coordinates. 'We may regard &, ¥, 2, ¢, u, v as functions of time.

7. We can represent the direction of a force by the right line, and its intensity by
the distance of the two points by which the position of the line is fixed. In denominating
the projections of the force on OX, OY, OZ by X, Y, Z, and the projections of its
moment with regard to the origin on YZ, XZ, XY by L, M, N, we obtain the following
new set of equal ratios:

) VI. =X:Y:Z:L:M:N.
Therefore X, Y, Z, L, M, N may also be considered as six line-coordinates. The equa-
tion of condition between them becomes

XL4+YMA4ZN=0. . . . . . . . . . . (6)

8. The six coordinates of each system range into two groups of three, to each
coordinate of one group corresponds one of the other. By exchanging the three axes of
coordinates, the three couples of corresponding coordinates are exchanged, both groups
remaining the same.

We may, in order to pass from the six coordinates of a right line to its five absolute
coordinates, divide any five of them by the sixth. Here we meet two cases, in dividing
either by a coordinate of the first or the second group.

9. Let us divide the first two and the three last terms of the ratios I. by the third
(tw'—t'w). In putting
/

w! —ulv t—th _ tw’——t’w_ w'—uw o' —dw
W=t =" TW=tu=5 W=t " W=ty =& W—iu —"

where, according to the equation of condition (3),

=706—5,
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7, 8, (—0), g, and  will be the five absolute coordinates of the right line. The last two
of the four equations (2), representing the planes projecting the right line on. the planes
X7 and YZ, as well as the projections themselves, may now be written thus,

r=rz2+¢,
Yy=8z-o0,
r and s being the trigonometrical tangents of the angles made by the two projections
with the axis OZ, ¢ and ¢ the segments intercepted by them on the axes OX and OY.
Again, let us divide the first. five terms of the set of ratios II. by the sixth (zy'—a'y).
In putting

2w’ —a'w Yo' —y'w 2w — 2w
=y — % T =%y o — ol — Z,,:
Y ¥ Yy —xy Yy —xy
y—yz _wd—az
ay — 'zry—loa o —aly— '8

where, according to the equation of condition (5),

L=pr—gm,
P> ¢> (—=), =, and { will be the five new coordinates. We meet four of them in the
last two of the four equations (4), representing the two points where the planes XZ and
YZ are intersected by the right line. These equations assume the following form,

t =pv+=7w,

U=qv - xw,
and may, in denoting the coordinates of the points within their planes by «,, z,, and g,, 2,,

be written thus,
x,t +z0+w=0,

yu+20+w=0;
whence ‘

z; ¥
p=—2, T=— g.—.—?,

Zy zy’
We may add to the former six sets of equal ratios the two following:

VII. = r:s: 1 2 (—0) g a(=ro—-cn)
VII. =—z:7:{(=pe—qmw): p :q: 1.

pm———

10. We have thus obtained eight different systems of line-coordinates, the coordinates
being the six terms of each of the eight sets of equal ratios I. to VIII. In changing the
position of the origin and the direction of the axes of coordinates, the coordinates of
each system are changed. But I do not here transcribe the formulee of transformation
of line-coordinates, observing only that these formule may be immediately transferred
from one system to any other.
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I1. Complexes. Congruencies. Surfaces generated by o moving right line. Developable
surfaces and curves of double curvature.

11. A homogeneous equation between any six line-coordinates is said to represent the
complex of those lines the coordinates of which verify that equation. According to the
identity of ratios 1. to VIII., the following equations,

Fl(wt/ —u'v), — (8 —t'v), (tw'—t'w), (tw' —t'w), (uw' —vw'w), (vw'—v'w)]=0,
F(aw' —a's), (ya'—y/m), (za/—2m), (y'—y'2), — (a7 —a'z), (ay —a'y)]=0,
F[cos e, cos B, cos y, 8 cos A, 6 cos w, 6 cos v]=0,

Fl(udv—vdu), —(tdv—vdt), (tdu—udt), dt, du, dv]=0,

¥ldz, dy, dz, (ydz—zdy), —(2dz—zdz), (xdy—ydax)]=0,

F[(X, Y, Z, L, M, N]=0,

F[r, s, 1, (—0), ¢, 71]=0,

F{(==), 7, {, p, ¢, 11=0,

represent the same complex; F being supposed to indicate always the same homogeneous
function of the different groups of line-coordinates. The complex is said to be of the nth
degree, and represented by £, if its equations are of that degree.

12. Starting from the first equation,

Q,=F[(w/ —u'v), — (&' —1tw), (tv'—t'u), (tw'—t'w), (uw' —v'w), (vw' —v'w)]=0, . (1)

t, w, v, w and ¢, o/, v/, w' are to be referred to any two planes passing through any line
of the complex. Let one of the two planes (¢, #/, v, w') be any given one. Then the
last equation, in regarding ¢, «', ¢/, w' as constant and ¢, u, v, w as variable, represents
within the given plane a curve enveloped by tangent-planes (¢, u, v, w). The lines of
the complex, confined within the plane, also envelope the same curve, the class of which
is the same as the degree of the complex. Hence

A complex Q, of the nth degree being given, in each plane traversing space there is a
curve of the nth class enveloped by lines of the complex.

The equations of such curves fully agree with the general equation of the complex
itself. 'We have only to consider in this equation #, u/, v/, w' as constant in referring
them to the given plane, while ¢, «, v, w are regarded as variable plane-coordinates.

If n=1, the curve in each plane is replaced by a point; each line within the plane
passing through that point belongs to the linear complex.

If n=2, the curves enveloped are conics, which may degenerate into systems of two
real or imaginary points.

13. If, in the second equation of the same complex,

20, =F[(6—0), (y—y)» (z—7), (97 —y/2), —(a2—22), (g —y)]=0, . (2)

where we put »'=w=1, and A denotes a constant, &/, ¥, #’ are referred to any given
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point in space and therefore regarded as constant, while &, y, z are the variable coordi-
nates of the points of any line of the complex, that equation represents a cone of the nth
order, the geometrical locus of lines of the complex passing through the given point.
Hence ‘

A complex: of the nth degree being given, each point of space is the centre of a cone of
the nth order into which lines of the complex converge.

In linear complexes the lines meeting in a given point constltute a plane. If n=2,
the cones are of the second order, and may degenerate into two real or imaginary
planes.

14. The right lines constituting a complex Q, may be distributed either within planes
traversing space, or according to points into which they converge. We hitherto con-
sidered Q, as a complex of right lines, the number of which is «® We may as well
regard it either as a complex of curves, or as a complex of cones, the number both of
curves and cones being oo®. Therefore we may say that

Q,=0
represents at the same time as well in each plane a curve of the nth class as cones of the
nth order having each point of space as centre.

The curve in a plane revolving round a given line, or moving parallel to itself, gene-
rates a surface. The cone the centre of which describes a given right line envelopes
a surface. The number of surfaces both generated by the curve and enveloped by cones
is . There is one of each kind of surfaces corresponding to any given line, all sur-
faces will be exhausted if that line turns in all directions round any of its points.
‘Accordingly we may likewise consider {2, as a complex of surfaces, either described by
curves or enveloped by cones.

15. In denoting by w any constant coefficient,

QtpQ,=0 . . . . . ... (8

represents an infinite number of complexes. The lines congruent in any two of them
belong simultaneously to all. = All these congruent lines constitute a congruency (2, ,,),
which we say is represented by the equations of the two complexes.

Each plane traversing space confines a curve of each of the two complexes, the mn
tangents common to both curves belong to the congruency. All curves within the same
plane belonging to the different complexes (3) which pass through the congruency,
touch the same mn of its lines. Again, each point is the centre of a cone belonging to
the different complexes (3). All such cones meet along the same mn lines, likewise
belonging to the congruency. Therefore in a congruency (Q,, Q,) there are mn lines
confined within each plane as there are mn lines passing ﬂwougk each point. The nun-
ber of lines constituting a congruency is oo

If m=1, there are in each plane n lines of the congruency (2,, Q,) passing through
the same point, as  of its lines converging into each point fall within the same plane;
plane and point corresponding to each other.
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16. In denoting by w and » any two constant coefficients,
Q=Q4uQ "+ Q"=0 . . . . . . . . . (4

represents an infinite number ( oo“’) of complexes. All these complexes meet along the
lines which simultaneously belong to any three of them, especially to

Q=0, Q'=0, Q"=0. . . . . . . . . (5

By means of these equations the position of such a line is determined, after having arbi-
trarily assumed the value of one of the four constants upon which the line depends; in
other terms, three of these four constants are functions of the fourth, varying each by
an infinitely small quantity if this one does. Hence we conclude that a line the coordi-
nates of which verify the three equations (5), generates a surface in passing successively
into all its positions.  This surface (Q, Q", Q") is said to be represented by the system of
the three equations (5).

17. Any point of space being given, there are three cones described by lines which
belong to the three complexes (5) and pass through the given point. Generally the
three cones (11) do not intersect along the same line. In certain positions only of
the point they do. In this case their common intersection belongs to the surface
(2, Q", Q"), and therefore the point itself also.

Put

2@ =F [(2=0), (3=, (:—2), (37 —y/2), —(a2—a2), (2 —29)] =0,
N =F"(2—2), (y=9), (2—7), (97 =y'2), —(22'—a2), (W’—w'z/)]=0=!* - (0)
NIQU=F"[(2—), (=4 ) (:—2), (97 —y2), —(a2—a%2), (ag/—a'y)]=0.]

If ', o/, &' are referred to any arbitrary point, and #, y, z regarded as variable, these
equations represent the three cones, (2'y'2') being their common centre, and their gene-
rating lines belonging to the three complexes (5). Without changing the conditions of
mutual intersection, the three cones may be moved parallel to themselves till the origin

of coordinates becomes their common centre. After that displacement their equations
are transformed into the following ones:

¥ (2,9, 2 (99 =y'2), —(a2'—2'2), (29 —2'y)]=0, |
P[0, g, 2 (1 —g/2), —(af =), (=] =0, | - - - o (D)
B[ g, 7 (y—y2), —(o5—22), (ay —wy))=0. |

These equations being homogeneous with regard to (#, , #), will, in the general case,

not be simultaneously verified by the three variables. In order to express that they
subsist simultaneously, we obtain, after having eliminated 2, y, 2,

o(@,y,2)=0, . . . . . . . . . . . (8

¢ indicating a function which involves the primitive constants of the three com-
plexes (6). This function might be rendered homogeneous by introducing ='. This
MDCCCLXY. 5P
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equation, in regarding the coordinates as variable, represents in ordinary point-coordi-
nates the surface which in line-coordinates is represented by the system of the three
equations (9).

18. Likewise there are in each plane traversing space three curves enveloped by lines
of the three complexes &, Q", Q". In the general case these curves have no common
tangent. In certain positions of the plane they have, and then the common tangent
belongs to the surface (', Q', Q). Reciprocally, within a plane passing through any
generating line of the surface, the curves enveloped by the lines of any complex Q touch
the generating line, and continue to do so if the plane revolves round it. The plane in

each of its positions is a tangent-plane of the surface.
Put ‘

Q' =F [(w —u'v), —(t'—t), (tw' —t'w), (t—7), (u—n'), (v—2)]=0, )
Q' =TF"[(u —u'v), —(t'—t), (tu'—tu), (t—1), (u—u'), (v—0/)]=0, } - (9)
Q'=F"[(w' —u'v), —(t/'—1'v), (tu'—t'u), (t—1'), (u—u'), (v—2)]=0.

In regarding 7, w, v as variable plane-coordinates, and referring ¢, «', v’ to the tra-
versing plane, these equations represent, within that plane, the three curves enveloped
by lines of the three complexes ', Q", Q”. On this account they may be reduced to
equations between two variables only, and therefore will not, in the general case, be
verified by any values of the three variables reduced to two. By eliminating the
variables between the last three equations, an equation,

MW V)=0, . . . . . L. (10)

will be obtained, which, if ¢, «/, ¢’ are regarded as variable, represents in plane-coordi-
nates the surface (2, Q', Q").

19. In order to derive the equations (9) from the equations (6) (both systems of equa-
tions representing the same surface), we may first pass from (6) to the three new equa-
TP [y~ =), )~y (=2, (=) (=)=,

F (42 —y/2), —(ad—22), (2 —2y), (@), (=), (e—#)]=0,
¥y —y2), — (22 —a"2), (ay' =2y), (&—7), (y—Y), (+—2)]=0,

and then replace &, y, 2, 4/, ¢/, 2 by ¢, u, v, ¢, o/, v. The last equations are likewise
obtained by merely exchanging amongst themselves the constant coeflicients in each of
the three equations (6). The way of exchanging is obvious. Hence, in considering
that the equation (10) is derived exactly by the same algebraical operations from (9) as
(8) from (7), we may conclude that (10) may be derived from (8) by a mere exchange of
constants and a substitution of plane- for point-coordinates.

20. In a congruency (L,, Q,) there are mn lines meeting in a given point. Two,
three, four of these lines may coincide. In this case the cones of both complexes
Q, and Q,,, the common centre of which is the given point, are tangent one to another,
or osculate each other along the double or multiple line. In order to get the analy-
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tical expression of these new conditions, we may, as we did before, replace both cones
by such as have the origin as centre. In putting

¥
=p i=0
the equations of these new cones may be written thus (No. 17),

f(p’ 2,9, z')=071
f(ps g, 2,9, zl)=071

f and f" representing two functions of the variables p and ¢, by means of which the lines
constituting the two cones are determined, 4/, y/, 2 being the coordinates of the given
point. If two of the mn intersecting lines of the two cones are coincident along any right
line (p, ¢), we get for the determination of that line, besides the two equations (11), the
following new one, § i

(11)

dg *dp = dg T dp>
which, if expanded, likewise assumes the form
| gy, d)=0, . . . . . . . . . (12)

J" indicating a new function. By eliminating p and ¢ between the three equations
(11) and (12), we get an equation of the form

Y, y, =0, . . . . . . . . . . . (13)

representing, if 2/, 7/, 2/ be regarded as variable, a developable surface, the locus of those
points through which double lines of the congruency pass, or, in other terms, the locus
of the double lines themselves.

In supposing that ¢Aree intersecting lines of the two cones (11) fall within the same
line (p, ¢), the following new equation of condition is obtained

‘ff(ﬂ) o B . df f_,_d*f(df) af 4

@ dpdq'?q'“ ) _ b _dg
dgf df' Zdajl d[ dj' ﬁ]‘ df’ 2_0[_]‘ _'7
dp* ( q) dpdg dq " dp (dp) dp dq
which again may be expanded into an equation of the form
FUp, g dyyfs )=0. . . . . . . . . .. (14)
This equation, combined with the three former equations (11) and (12), furnishes a new
equation of condition,
Y, y,d)=0. . . . . . . . . . . . . (19)

The system of the two equations (13) and (15) gives, as locus of points through which
triple lines of the congruency pass, a curve of double curvature.
In pursuing the same course a new equation of the same form as (13) and (15) is
" 5pr2
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obtained, which, combined with these, indicates that there is a certain number of points
into which quadruple lines of the congruency converge.

In congruencies of a peculiar description only we meet quintuple lines.

21. In quite the same manner we may determine the position of planes within
which two, three, four of the mn lines of the congruency (,, ,) coincide. In that
case both curves within the plane, enveloped by lines of the complexes Q,and Q,,
touch or osculate one another on a common tangent. '

In operating on the first two equations (9) as we did on the first two equations (6),
we get, in order to represent in plane-coordinates the locus enveloped by planes con-
fining a double line of the congruency, the following equation,

Y, w,v)=0, . . . . . . . . . . (16)

which, as the remarks of No. 19 here likewise hold, is derived by a mere exchange of
constants from (10). Fach plane passing through a double line being an enveloping
tangent plane of the represented surface, this surface degenerates into a curve of
double curvature.

Another equation may be derived from (15) in the same way. Let it be

Yt u,v)=0, . . . . . . . . . .. (1)
the system of the two equations (16) and (17) representing a developable surface, the
tangent planes of which confine the triple lines of the congruency. Finally, there are
certain tangent planes of the developable surface which confine the quadruple lines of
the congruency. These planes, as well as the points of the curve of double curvature
through which the quadruple lines pass, are determined by associated plane- and point-
coordinates, both being functions of the constants of the congruency, and are obtained
one from another by the above-mentioned exchange of these constants.

22. The double lines of a congruency constitute a surface, degenerated into a deve-
lopable one, as they envelope a surface, degenerated into a curve of double curvature.
The developable surface is represented in point-coordinates by a single equation (13), in
plane-coordinates by the system of two equations (16) and (17). The curve of double
curvature is represented in plane-coordinates by a single equation (16), in point-coordi-
nates by the system of two equations (13) and (15). The tangent-planes of the surface,
confining triple lines of the congruency, osculate the curve; the points of the curve,
through which these triple lines pass, are osculating points of the surface, in which
three consecutive tangent planes meet. The curve, in certain points where the tangent
is an osculating one, is osculated by a plane in four points. Through such a point pass
four consecutive tangent planes of the surface, the common intersection of which is a
line of inflexion of the developable surface. The quadruple lines of the congruency
pass through such points, and are confined within such planes*.

* In two remarkable papers “On a New Analytical Representation of Curves in Spaée,” published in the
third and fifth volume of the Quarterly Journal of Mathematics, Professor CAYLEY emploved before me, in order
to represent cones, the six coordinates of a right line, depending upon any two of its points. Having lately
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III. On a new System of Coordinates.

23. We have hitherto determined the position of a right line in space in making use
of the ordinary system of three axes OX, OY, OZ intersecting each other. The new
question is whether we may substitute for this system another, by means of which we
are enabled to fix immediately the position of a right line without recurring to points
and planes.

In the ordinary system of coordinates, (1) the poéition of a point is determined by
means of three planes parallel to the planes of coordinates and meeting in that point,
(2) the position of a plane by a linear equation between the three coordinates of a point,
regarded as variable; both point and plane depending upon three constants.

In an analogous way a right line is determined by the intersection of four linear
complexes. Such a linear complex depends upon the position of its axis and a con-
stant (paper presented, No. 29). A right line, regarded as the direction of a force,
belongs to the complex, if the moment of rotation of the force with regard to the axis,
divided by its projection on the axis, be equal to the constant. Accordingly any four
axes in space being given, the position of a right line is fixed by means of four constants,
obtained by dividing the four moments of rotation with regard to the four axes by the
four corresponding projections on the same axes.

The four axes of the complexes constitute the new system of coordinates; the four
constants are the four coordinates of the given right line. The right line intersecting
the four axes is the origin of coordinates, its four coordinates being equal to zero.

In the new system of coordinates a right line is determined in the most general way
by its four coordinates; but an equation between the four coordinates is not in a general
way sufficient to represent a linear complex, depending as it does on five constants.

We may ad libitum increase the number of coordinates of a right line.

24. LetP,Q,R,S, T, U..be the axes of any number of complexes, and p, ¢, 7, s, ¢, . .
the corresponding coordinates of a given right line (according to the last number). Let

Q,=E,—p=0, Q=E —¢=0, Q=E —r=0,
Q,=8,—s=0, Q=E,—¢t=0, Q=E,—u=0...

be the equations of the complexes. In order to express that the complexes meet along
the same line, the following equations of condition are obtained,

Qt_:_z p+7\Qq+Fer+p Qs?l

: (18)
Q=70 ANQ,+p/Q,+/Q,,

only seen the papers, I hasten to mention it now. But, besides the coincidence referred to, the leading views
of Professor CayLey’s paper and mine have nothing in common. On this occasion I may state that the prin-:
ciples upon which my paper is based were advanced by me, nearly twenty years ago (Geometry of Space,
No. 258), but this had entirely escaped from my memory when I recurred to Geometry some time since.
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where we may suppose that P, Q, R, S are the former four axes of coordinates; x, #/, a, A/,
w, @, v,V indicate any constant coefficients.

In putting the coordinates p, ¢, 7, s, ¢, %. . equal to zero, the general equations of the
complexes become '

Ep=0’ Eq=0, E,=0, E,=0, E,=0, E,=0.
These new equations represent complexes of a peculiar kind, the lines of which inter-

sect their axes; they may be said to represent the axes themselves.
In order to satisfy the equation (18), we put

B, =2 E,+n Eq+!"5r+"5n‘l (19)
BB+ NEAEAE T T T T T
whetice Ce e
=g e+ )

u=xpNg+prvs. |
The equations (19) require that the origin met by the axes P, Q, R, S be likewise met
by the new axes T, U...

Therefore p, ¢, 7, s, ¢, .. may be regarded as coordinates of the right line along
which all complexes meet; the axes of the complexes intersecting the same right line
being the axes of coordinates. A right line being completely determined by the first
four coordinates, those remaining depend upon them by linear equations (20).

The system of four axes of coordinates depends upon 16, of five axes upon 19, of six
upon 22 constants.

Having thus established a system of coordinates which, independently of points and
planes, fixes the position of a right line in space, we are enabled, by regarding right lines
as elements of space, to reconstruct the whole geometry without recurring to the ordi-
nary system. Here we are guided by analogy. As far as I may judge, the task is a
most grateful but at the same time a long and laborious one.

IV. Geometry of Forces.

25. In recapitulating the contents of the first three paragraphs of this note, new con-
siderations have been suggested to me, which seem calculated, while greatly increasing
again this kind of inquiry, to put the key-stone to it. Hitherto, when I borrowed
technical terms from mechanical science, the only intention was to simplify the expression.
But force may be regarded as a merely geometrical notion, and there is only one step
more to be taken in order to arrive at a « Geometry of Forces,” as there is a geometry
based on the notion of right lines.

Forces depend upon five independent constants, four of which indicate their position,
while the fifth indicates their intensity. We may call these constants the five coordi-
nates of the forces.
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In order to fix the direction of a force, we may employ line-coordinates and choose the
following,
X,Y,7Z, L MN,
indicating the projections of the force on the three axes of coordinates OX, oY, OZ,
and its three moments of rotation with regard to these axes. Between them the
following equation of condition holds good, '

XL+YM+ZN=0

(see No. 7). The quotients obtained by dividing any five of them by the sixth are the
absolute values of coordinates. From these quotients the intensity of the force has dis-
appeared.

The same siz constants, reduced by the last equation to five independent ones, may
be regarded as the absolute values of the coordinates of the force. Instead of homoge-
neous equations between them, if regarded as variable, representing complexes of lines
(of directions of the forces), we now get ordinary equations between the same variables
representing complexes of forces.

The extension of all former developments thus indicated immediately occurs to us.
A single instance may be referred to here. Forces constituting a linear complex are
such passing in all directions through each point of space as have their intensity equal
to the segments taken on their directions from the point to a certain plane corresponding
to it. Forces common to two linear complexes and passing through a given point are
confined within the same plane, the distance from the points where their directions meet
agiven line within the plane being their intensity. Forces, the coordinates of which
verify simultaneously three linear equations, are distributed through space in such a
manner that there is one force of a given intensity passing through each point of
space. .
The general contents of this note (except § IV.) were in a verbal communication pre-
sented by me at the last Birmingham Meeting of the British Association. As they
concern the principles on which the original paper is based, giving to them a symmetry
and a generality I was not before aware of, I thought it necessary to add the note
to that paper. At the same time I also endeavoured to give an idea of the great ferti-
lity of the method developed. But as I am now preparing a volume for publication on
this subject, I do not think it suitable to enter here into any details. The work will |
embrace the theory of the general equation of the second degree between line-coordi-
nates, requiring no means of discussion but those employed by me in the case of equa-
tions of the same degree between point- or plane-coordinates. The complex of lines
represented by such an equation may be regarded likewise as a complex of curves of the
second class, one of which is confined in each plane, or as a complex of cones of the
second order, each point of space being the centre of such a cone. In reducing the
number of constants upon which the complex depends from 19 to 9, we pass in parti-
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cularizing step. by step from the general complex to a surface of the second order and
class, determined by its tangents.

I intend resuming the consideration of the mechanical part of this note. Then a last
generalization will occur to us, the equation of condition, hitherto admitted between
the six coordinates 2, y, 2z, L, M, N, being removed.

CONTENTS.

L. On Linear Complexes of Right Lines.

Preliminary explanations.—Point-coordinates. FEquations between them representing
surfaces by means of their points. Plane coordinates. Equations between them repre-
senting surfaces enveloped by planes, 1. Double definition of right lines, either by
means of their points or by means of traversing planes. Rays. Axes. The two pro-
jections of a ray within two planes of coordinates depend upon four linear constants,
which may be regarded as ray-coordinates, 7, s, ¢, ¢ and %, u, v,, v,. The two points in
which two planes of coordinates are intersected by an axis, depend upon four linear
constants which are its coordinates, , 9, 2, %, and p, ¢, =, z, 2-5. Complexes of rays or
axes represented by one equation between their four coordinates. Congruent lines of
two complexes constitute a congruency, of three complexes a configuration (surface
gauche). In a complex every point is the vertex of a cone, every plane contains an
enveloped cone. In a congruency there is a certain number of right lines passing
through a given point, and confined within a given plane, 6, 7. A configuration of rays
represented by three linear equations, either between 7, s, ¢, ¢ or ¢, u, v,, v, is a para-
boloid, or a hyperboloid, 8. A configuration of axes represented by three equations,
either between p, ¢, @, % or &, ¥, 2, 2,, is either a hyperboloid or a paraboloid, 9. Ina
congruency of rays or axes represented by two linear equations, there is one ray and one
axis passing through a given point and confined within a given plane, 10. Construction,
by means of two fixed points, of the rays of a congruency represented by two linear
equations between %, u, v,, v, 11. Construction, by means of two planes, of the axes of
a congruency represented by two linear equations between z, y, 2, 2,, 12.

Linear complexes of rays—In a complex represented by a linear equation between
r, s, g, o, all rays traversing a given point constitute a plane; all rays confined within a
given plane meet in the same point. Points and planes corresponding to each other,
18-15. A new variable (se—r¢) introduced. The general equation of a linear complex
is Ar+Bs+C+Do+Ee+F(se—r0)=0. Equation of a plane corresponding to a given
point, of a point corresponding to a given plane, 16-19. Conjugate right lines.
Each ray intersecting any two conjugate lines is a ray of the complex. A ray of the
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complex may be regarded as two congruent conjugate lines. Principle of polar reci-
procity applied, 20. Construction of the plane corresponding to a given point, of the
point corresponding to a given plane, 21, 22. Geometrical determination of the con-
stant of the general equation of the complex. There is a characteristic direction given

by the double equation =% =2. If that direction falls within xy, the term (se—7rs)

disappears and the general equation becomes linear. If any plane perpendicular to it is
taken as one of the three planes of rectangular coordinates, and the corresponding point
within it as origin, the general equation assumes one of the forms, s=#ke, r=#ko,
se—ro=F. A linear complex may, without being altered, turn round a fixed line, and move
along it parallel to itself, 23-29. Geometrical interpretation of the last equations, 30.
Points and planes corresponding to one another with regard to the complex sp—ro=£%.
Geometrical interpretations, 31, 32. Generalization, 33. Conjugate lines with regard
to the complex se—ro=F, 84. A linear complex depends upon five constants, four of
which give the position of its axis, 35. Formule of the transformation of ray-coordinates
corresponding to any displacement of the axes of coordinates, 36-38. Analytical deter-
mination of the axis of a complex, represented by the general equation. Determination
of %, 39-43. 'In the peculiar case in which £ is equal to zero, all rays meet the axis of
the complex, 44. Rays passing through the same point, 45.

Linear congruencies of rays—A linear congruency, along which an infinite number of
complexes intersect each other, is represented by the equations of any two of them.
Through a given point of space only one ray passes, corresponding to that point, as there
is only one ray confined within a given plane, 46. There is in each complex passing
through the congruency one line conjugate to a given right line : all these lines belong
to one generation of a hyperboloid, the second generation of which contains rays of the
congruency. Generation of a linear congruency by a variable hyperboloid, 47-49.
Characteristic section of a congruency to which the axes of all passing complexes are
parallel. The axis of the congruency is a fixed right line, perpendicular to that section
on which the axes of all complexes meet at right angles, 560, 81. 'The locus of points
having in all complexes the same corresponding plane is a system of two right lines, the
directrices of the congruency. Central plane parallel to both directrices and equidistant
from them. The directrices may be real or imaginary, 62-564. In the first case there
are amongst the complexes two of a peculiar description [44] having both directrices as
axes. All rays of the congruency meet both its directrices, 55. The peculiar case in
which one of the two directrices is infinitely distant, 56.- Each of any two complexes
being given by means of its constant £ and the position of its axis, to determine both
directrices of the congruency, 57-59. A congruency being given by means of its two direc-
trices, to determine the constants and the axes of the complexes passing through it.
Centre of the congruency. The two secondary axes within the central plane, 60. Locus
of the axes of all complexes meeting along the same ‘congruency, 61.

Linear configurations of rays represented by the equations of three linear complexes.
MDCCCLXYV. HQ
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An infinite number of congruencies meet along a linear configuration. Generally it is a

“hyperboloid. Its rays constitute one of its generations, while the directrices of all con-
gruencies constitute the other, 62. The central planes of all congruencies meet in the
same point: the centre of the configuration. Its diameters meet both directrices of the
different congruencies, 63. A configuration is determined by means of three complexes,
or by means of three congruencies, obtained by combining them two by two. Three
couples of planes drawn through both directrices of each of the congruencies parallel to
its central plane constitute a parallelopiped circumscribed to the hyperboloid. Each ray
intersects all six direcirices. The ray within each of the six planes is parallel to the
directrix within the opposite plane; the point in which it meets the directrix within
the same plane is the point of contact. Three diameters determined by both points of
contact within the three couples of opposite planes. Imaginary diameters correspond
to imaginary directrices, asymptotes to congruent directrices, 64. A hyperboloid being
given, we may return to the congruencies and complexes which constitute it, 65. The
equations of the configurations transformed into an equation between «, g, 2, 66.

I1. On Complexes of Luminous Rays within Biaxal Crystals.

Complexes of doubly refracted rays corresponding to complexes of incident rays, 1.

Digression on double refraction. HuYGHENS'S principle. The author’s construction
presented, 1838.  Auxiliary ellipsoids. The ellipsoid E, with regard to which the wave-
surface is its own polar surface. The plane of refraction, containing both refracted
rays, passes through SS, the polar line of RR, along which the surface of the crystal is
intersected by the front of the incident elementary wave at that moment when, within
the crystal, the wave-surface is formed, 2-6. The plane of refraction is congruent with
the diametral plane of E, the conjugate diameter of which is perpendicular to the
plane of incidence in O, 7.  All rays incident within the same plane are, after double
refraction, confined again within the same plane, 8. While the plane of incidence
turns round the vertical in O, the corresponding plane of refraction turns round that
diameter of E, the conjugate diametral plane of which is the surface of the crystal, 9,
10. Whatever may be the plane or curved surface met by an incident ray in any given
point O, all corresponding planes o refraction pass through a fixed right line, 11.
Peculiar cases of complexes. The plane of refraction perpendicular to the surface-of
the crystal. The incident and the two refracted rays confined within the same plane.
A circular section of E falling within the surface of the crystal, 12, 13. Analytical
determination of SS, 14. A fourth auxiliary eilipsoid, 15, 16.

Complex of doubly refracted rays determined by means of E. Its equation depend-
ing upon the constants of E, 17, 18. By taking as axes of coordinates three conjugate
diameters of B, two of which, falling within the surface of the crystal, are perpendicular
to each other, the general equation of the complex becomes ro=£%sg, the constant %
being the ratio of the squares of the two rectangular diameters, 19. Geometrical in-
terpretation, 20. Refracted rays of the complex passing through a given point consti-
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tute a cone of the second order. The cone remains the same if the given point moves
along a right line, passing thvough O, 21. Peculiar cases, 22-24. A hyperbola enve-
loped by the doubly refracted rays within any given plane. Its determination, 25.
Peculiar cases. Geometrical interpretations, 26-28. The complex generated in three
different ways by a variable linear congruency, 29. Peculiar case of a complex, the
crystal being cut along a circular section of E. All doubly refracted rays meet that
diameter of E the conjugate plane of which is the circular section, 30. Peculiar case
in which the surface of the crystal is a principal section, 31. Case of uniaxal crystals,
32, 33. The ellipsoid E replaced by a new ellipsoid, the radii vectores of which indicate
the reciprocal values of optical elasticity, 34.

Additional Note.

Coordinates of a right line, 1-10. Complexes. Congruencies. Surfaces generated
by a moving right line. Developable surfaces and curves of double curvature, 11-22.
A new system of coordinates, 23, 24. Geometry of forces, 25.
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